Metamath Proof Explorer


Theorem relogmuld

Description: The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of Cohen p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses relogcld.1 ( 𝜑𝐴 ∈ ℝ+ )
relogmuld.2 ( 𝜑𝐵 ∈ ℝ+ )
Assertion relogmuld ( 𝜑 → ( log ‘ ( 𝐴 · 𝐵 ) ) = ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 relogcld.1 ( 𝜑𝐴 ∈ ℝ+ )
2 relogmuld.2 ( 𝜑𝐵 ∈ ℝ+ )
3 relogmul ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ+ ) → ( log ‘ ( 𝐴 · 𝐵 ) ) = ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) )
4 1 2 3 syl2anc ( 𝜑 → ( log ‘ ( 𝐴 · 𝐵 ) ) = ( ( log ‘ 𝐴 ) + ( log ‘ 𝐵 ) ) )