Step |
Hyp |
Ref |
Expression |
1 |
|
relogoprlem.1 |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝐵 ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) 𝐺 ( exp ‘ ( log ‘ 𝐵 ) ) ) ) |
2 |
|
relogoprlem.2 |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ ( log ‘ 𝐵 ) ∈ ℝ ) → ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ∈ ℝ ) |
3 |
|
reeflog |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
4 |
|
reeflog |
⊢ ( 𝐵 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) |
5 |
3 4
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) 𝐺 ( exp ‘ ( log ‘ 𝐵 ) ) ) = ( 𝐴 𝐺 𝐵 ) ) |
6 |
5
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( ( exp ‘ ( log ‘ 𝐴 ) ) 𝐺 ( exp ‘ ( log ‘ 𝐵 ) ) ) ) = ( log ‘ ( 𝐴 𝐺 𝐵 ) ) ) |
7 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
8 |
|
relogcl |
⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) |
9 |
|
recn |
⊢ ( ( log ‘ 𝐴 ) ∈ ℝ → ( log ‘ 𝐴 ) ∈ ℂ ) |
10 |
|
recn |
⊢ ( ( log ‘ 𝐵 ) ∈ ℝ → ( log ‘ 𝐵 ) ∈ ℂ ) |
11 |
1
|
fveq2d |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝐵 ) ∈ ℂ ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) ) = ( log ‘ ( ( exp ‘ ( log ‘ 𝐴 ) ) 𝐺 ( exp ‘ ( log ‘ 𝐵 ) ) ) ) ) |
12 |
9 10 11
|
syl2an |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ ( log ‘ 𝐵 ) ∈ ℝ ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) ) = ( log ‘ ( ( exp ‘ ( log ‘ 𝐴 ) ) 𝐺 ( exp ‘ ( log ‘ 𝐵 ) ) ) ) ) |
13 |
|
relogef |
⊢ ( ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ∈ ℝ → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) ) = ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) |
14 |
2 13
|
syl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ ( log ‘ 𝐵 ) ∈ ℝ ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) ) = ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) |
15 |
12 14
|
eqtr3d |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ ( log ‘ 𝐵 ) ∈ ℝ ) → ( log ‘ ( ( exp ‘ ( log ‘ 𝐴 ) ) 𝐺 ( exp ‘ ( log ‘ 𝐵 ) ) ) ) = ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) |
16 |
7 8 15
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( ( exp ‘ ( log ‘ 𝐴 ) ) 𝐺 ( exp ‘ ( log ‘ 𝐵 ) ) ) ) = ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) |
17 |
6 16
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( 𝐴 𝐺 𝐵 ) ) = ( ( log ‘ 𝐴 ) 𝐹 ( log ‘ 𝐵 ) ) ) |