Description: The range of the natural logarithm function includes the real numbers. (Contributed by Paul Chapman, 21-Apr-2008) (Proof shortened by Mario Carneiro, 1-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | relogrn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ran log ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
2 | pipos | ⊢ 0 < π | |
3 | pire | ⊢ π ∈ ℝ | |
4 | lt0neg2 | ⊢ ( π ∈ ℝ → ( 0 < π ↔ - π < 0 ) ) | |
5 | 3 4 | ax-mp | ⊢ ( 0 < π ↔ - π < 0 ) |
6 | 2 5 | mpbi | ⊢ - π < 0 |
7 | reim0 | ⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ 𝐴 ) = 0 ) | |
8 | 6 7 | breqtrrid | ⊢ ( 𝐴 ∈ ℝ → - π < ( ℑ ‘ 𝐴 ) ) |
9 | 0re | ⊢ 0 ∈ ℝ | |
10 | 9 3 2 | ltleii | ⊢ 0 ≤ π |
11 | 7 10 | eqbrtrdi | ⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ 𝐴 ) ≤ π ) |
12 | ellogrn | ⊢ ( 𝐴 ∈ ran log ↔ ( 𝐴 ∈ ℂ ∧ - π < ( ℑ ‘ 𝐴 ) ∧ ( ℑ ‘ 𝐴 ) ≤ π ) ) | |
13 | 1 8 11 12 | syl3anbrc | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ran log ) |