Metamath Proof Explorer


Theorem relop

Description: A necessary and sufficient condition for a Kuratowski ordered pair to be a relation. (Contributed by NM, 3-Jun-2008) A relation is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a relation is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is relsnopg , as funsng is to funop . (New usage is discouraged.)

Ref Expression
Hypotheses relop.1 𝐴 ∈ V
relop.2 𝐵 ∈ V
Assertion relop ( Rel ⟨ 𝐴 , 𝐵 ⟩ ↔ ∃ 𝑥𝑦 ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) )

Proof

Step Hyp Ref Expression
1 relop.1 𝐴 ∈ V
2 relop.2 𝐵 ∈ V
3 df-rel ( Rel ⟨ 𝐴 , 𝐵 ⟩ ↔ ⟨ 𝐴 , 𝐵 ⟩ ⊆ ( V × V ) )
4 dfss2 ( ⟨ 𝐴 , 𝐵 ⟩ ⊆ ( V × V ) ↔ ∀ 𝑧 ( 𝑧 ∈ ⟨ 𝐴 , 𝐵 ⟩ → 𝑧 ∈ ( V × V ) ) )
5 1 2 elop ( 𝑧 ∈ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑧 = { 𝐴 } ∨ 𝑧 = { 𝐴 , 𝐵 } ) )
6 elvv ( 𝑧 ∈ ( V × V ) ↔ ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ )
7 5 6 imbi12i ( ( 𝑧 ∈ ⟨ 𝐴 , 𝐵 ⟩ → 𝑧 ∈ ( V × V ) ) ↔ ( ( 𝑧 = { 𝐴 } ∨ 𝑧 = { 𝐴 , 𝐵 } ) → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) )
8 jaob ( ( ( 𝑧 = { 𝐴 } ∨ 𝑧 = { 𝐴 , 𝐵 } ) → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ↔ ( ( 𝑧 = { 𝐴 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ∧ ( 𝑧 = { 𝐴 , 𝐵 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
9 7 8 bitri ( ( 𝑧 ∈ ⟨ 𝐴 , 𝐵 ⟩ → 𝑧 ∈ ( V × V ) ) ↔ ( ( 𝑧 = { 𝐴 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ∧ ( 𝑧 = { 𝐴 , 𝐵 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
10 9 albii ( ∀ 𝑧 ( 𝑧 ∈ ⟨ 𝐴 , 𝐵 ⟩ → 𝑧 ∈ ( V × V ) ) ↔ ∀ 𝑧 ( ( 𝑧 = { 𝐴 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ∧ ( 𝑧 = { 𝐴 , 𝐵 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
11 19.26 ( ∀ 𝑧 ( ( 𝑧 = { 𝐴 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ∧ ( 𝑧 = { 𝐴 , 𝐵 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ) ↔ ( ∀ 𝑧 ( 𝑧 = { 𝐴 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ∧ ∀ 𝑧 ( 𝑧 = { 𝐴 , 𝐵 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
12 10 11 bitri ( ∀ 𝑧 ( 𝑧 ∈ ⟨ 𝐴 , 𝐵 ⟩ → 𝑧 ∈ ( V × V ) ) ↔ ( ∀ 𝑧 ( 𝑧 = { 𝐴 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ∧ ∀ 𝑧 ( 𝑧 = { 𝐴 , 𝐵 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
13 4 12 bitri ( ⟨ 𝐴 , 𝐵 ⟩ ⊆ ( V × V ) ↔ ( ∀ 𝑧 ( 𝑧 = { 𝐴 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ∧ ∀ 𝑧 ( 𝑧 = { 𝐴 , 𝐵 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
14 snex { 𝐴 } ∈ V
15 eqeq1 ( 𝑧 = { 𝐴 } → ( 𝑧 = { 𝐴 } ↔ { 𝐴 } = { 𝐴 } ) )
16 eqeq1 ( 𝑧 = { 𝐴 } → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ↔ { 𝐴 } = ⟨ 𝑥 , 𝑦 ⟩ ) )
17 eqcom ( { 𝐴 } = ⟨ 𝑥 , 𝑦 ⟩ ↔ ⟨ 𝑥 , 𝑦 ⟩ = { 𝐴 } )
18 vex 𝑥 ∈ V
19 vex 𝑦 ∈ V
20 18 19 opeqsn ( ⟨ 𝑥 , 𝑦 ⟩ = { 𝐴 } ↔ ( 𝑥 = 𝑦𝐴 = { 𝑥 } ) )
21 17 20 bitri ( { 𝐴 } = ⟨ 𝑥 , 𝑦 ⟩ ↔ ( 𝑥 = 𝑦𝐴 = { 𝑥 } ) )
22 16 21 bitrdi ( 𝑧 = { 𝐴 } → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ↔ ( 𝑥 = 𝑦𝐴 = { 𝑥 } ) ) )
23 22 2exbidv ( 𝑧 = { 𝐴 } → ( ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ↔ ∃ 𝑥𝑦 ( 𝑥 = 𝑦𝐴 = { 𝑥 } ) ) )
24 15 23 imbi12d ( 𝑧 = { 𝐴 } → ( ( 𝑧 = { 𝐴 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ↔ ( { 𝐴 } = { 𝐴 } → ∃ 𝑥𝑦 ( 𝑥 = 𝑦𝐴 = { 𝑥 } ) ) ) )
25 14 24 spcv ( ∀ 𝑧 ( 𝑧 = { 𝐴 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) → ( { 𝐴 } = { 𝐴 } → ∃ 𝑥𝑦 ( 𝑥 = 𝑦𝐴 = { 𝑥 } ) ) )
26 sneq ( 𝑤 = 𝑥 → { 𝑤 } = { 𝑥 } )
27 26 eqeq2d ( 𝑤 = 𝑥 → ( 𝐴 = { 𝑤 } ↔ 𝐴 = { 𝑥 } ) )
28 27 cbvexvw ( ∃ 𝑤 𝐴 = { 𝑤 } ↔ ∃ 𝑥 𝐴 = { 𝑥 } )
29 ax6evr 𝑦 𝑥 = 𝑦
30 19.41v ( ∃ 𝑦 ( 𝑥 = 𝑦𝐴 = { 𝑥 } ) ↔ ( ∃ 𝑦 𝑥 = 𝑦𝐴 = { 𝑥 } ) )
31 29 30 mpbiran ( ∃ 𝑦 ( 𝑥 = 𝑦𝐴 = { 𝑥 } ) ↔ 𝐴 = { 𝑥 } )
32 31 exbii ( ∃ 𝑥𝑦 ( 𝑥 = 𝑦𝐴 = { 𝑥 } ) ↔ ∃ 𝑥 𝐴 = { 𝑥 } )
33 eqid { 𝐴 } = { 𝐴 }
34 33 a1bi ( ∃ 𝑥𝑦 ( 𝑥 = 𝑦𝐴 = { 𝑥 } ) ↔ ( { 𝐴 } = { 𝐴 } → ∃ 𝑥𝑦 ( 𝑥 = 𝑦𝐴 = { 𝑥 } ) ) )
35 28 32 34 3bitr2ri ( ( { 𝐴 } = { 𝐴 } → ∃ 𝑥𝑦 ( 𝑥 = 𝑦𝐴 = { 𝑥 } ) ) ↔ ∃ 𝑤 𝐴 = { 𝑤 } )
36 25 35 sylib ( ∀ 𝑧 ( 𝑧 = { 𝐴 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) → ∃ 𝑤 𝐴 = { 𝑤 } )
37 eqid { 𝐴 , 𝐵 } = { 𝐴 , 𝐵 }
38 prex { 𝐴 , 𝐵 } ∈ V
39 eqeq1 ( 𝑧 = { 𝐴 , 𝐵 } → ( 𝑧 = { 𝐴 , 𝐵 } ↔ { 𝐴 , 𝐵 } = { 𝐴 , 𝐵 } ) )
40 eqeq1 ( 𝑧 = { 𝐴 , 𝐵 } → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ↔ { 𝐴 , 𝐵 } = ⟨ 𝑥 , 𝑦 ⟩ ) )
41 40 2exbidv ( 𝑧 = { 𝐴 , 𝐵 } → ( ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ↔ ∃ 𝑥𝑦 { 𝐴 , 𝐵 } = ⟨ 𝑥 , 𝑦 ⟩ ) )
42 39 41 imbi12d ( 𝑧 = { 𝐴 , 𝐵 } → ( ( 𝑧 = { 𝐴 , 𝐵 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ↔ ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐵 } → ∃ 𝑥𝑦 { 𝐴 , 𝐵 } = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
43 38 42 spcv ( ∀ 𝑧 ( 𝑧 = { 𝐴 , 𝐵 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) → ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐵 } → ∃ 𝑥𝑦 { 𝐴 , 𝐵 } = ⟨ 𝑥 , 𝑦 ⟩ ) )
44 37 43 mpi ( ∀ 𝑧 ( 𝑧 = { 𝐴 , 𝐵 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) → ∃ 𝑥𝑦 { 𝐴 , 𝐵 } = ⟨ 𝑥 , 𝑦 ⟩ )
45 eqcom ( { 𝐴 , 𝐵 } = ⟨ 𝑥 , 𝑦 ⟩ ↔ ⟨ 𝑥 , 𝑦 ⟩ = { 𝐴 , 𝐵 } )
46 18 19 1 2 opeqpr ( ⟨ 𝑥 , 𝑦 ⟩ = { 𝐴 , 𝐵 } ↔ ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ∨ ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐵 = { 𝑥 } ) ) )
47 45 46 bitri ( { 𝐴 , 𝐵 } = ⟨ 𝑥 , 𝑦 ⟩ ↔ ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ∨ ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐵 = { 𝑥 } ) ) )
48 idd ( 𝐴 = { 𝑤 } → ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) → ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ) )
49 eqtr2 ( ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐴 = { 𝑤 } ) → { 𝑥 , 𝑦 } = { 𝑤 } )
50 18 19 preqsn ( { 𝑥 , 𝑦 } = { 𝑤 } ↔ ( 𝑥 = 𝑦𝑦 = 𝑤 ) )
51 50 simplbi ( { 𝑥 , 𝑦 } = { 𝑤 } → 𝑥 = 𝑦 )
52 49 51 syl ( ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐴 = { 𝑤 } ) → 𝑥 = 𝑦 )
53 dfsn2 { 𝑥 } = { 𝑥 , 𝑥 }
54 preq2 ( 𝑥 = 𝑦 → { 𝑥 , 𝑥 } = { 𝑥 , 𝑦 } )
55 53 54 eqtr2id ( 𝑥 = 𝑦 → { 𝑥 , 𝑦 } = { 𝑥 } )
56 55 eqeq2d ( 𝑥 = 𝑦 → ( 𝐴 = { 𝑥 , 𝑦 } ↔ 𝐴 = { 𝑥 } ) )
57 53 54 eqtrid ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑥 , 𝑦 } )
58 57 eqeq2d ( 𝑥 = 𝑦 → ( 𝐵 = { 𝑥 } ↔ 𝐵 = { 𝑥 , 𝑦 } ) )
59 56 58 anbi12d ( 𝑥 = 𝑦 → ( ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐵 = { 𝑥 } ) ↔ ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ) )
60 59 biimpd ( 𝑥 = 𝑦 → ( ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐵 = { 𝑥 } ) → ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ) )
61 60 expd ( 𝑥 = 𝑦 → ( 𝐴 = { 𝑥 , 𝑦 } → ( 𝐵 = { 𝑥 } → ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ) ) )
62 61 com12 ( 𝐴 = { 𝑥 , 𝑦 } → ( 𝑥 = 𝑦 → ( 𝐵 = { 𝑥 } → ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ) ) )
63 62 adantr ( ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐴 = { 𝑤 } ) → ( 𝑥 = 𝑦 → ( 𝐵 = { 𝑥 } → ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ) ) )
64 52 63 mpd ( ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐴 = { 𝑤 } ) → ( 𝐵 = { 𝑥 } → ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ) )
65 64 expcom ( 𝐴 = { 𝑤 } → ( 𝐴 = { 𝑥 , 𝑦 } → ( 𝐵 = { 𝑥 } → ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ) ) )
66 65 impd ( 𝐴 = { 𝑤 } → ( ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐵 = { 𝑥 } ) → ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ) )
67 48 66 jaod ( 𝐴 = { 𝑤 } → ( ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ∨ ( 𝐴 = { 𝑥 , 𝑦 } ∧ 𝐵 = { 𝑥 } ) ) → ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ) )
68 47 67 syl5bi ( 𝐴 = { 𝑤 } → ( { 𝐴 , 𝐵 } = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ) )
69 68 2eximdv ( 𝐴 = { 𝑤 } → ( ∃ 𝑥𝑦 { 𝐴 , 𝐵 } = ⟨ 𝑥 , 𝑦 ⟩ → ∃ 𝑥𝑦 ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ) )
70 69 exlimiv ( ∃ 𝑤 𝐴 = { 𝑤 } → ( ∃ 𝑥𝑦 { 𝐴 , 𝐵 } = ⟨ 𝑥 , 𝑦 ⟩ → ∃ 𝑥𝑦 ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ) )
71 70 imp ( ( ∃ 𝑤 𝐴 = { 𝑤 } ∧ ∃ 𝑥𝑦 { 𝐴 , 𝐵 } = ⟨ 𝑥 , 𝑦 ⟩ ) → ∃ 𝑥𝑦 ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) )
72 36 44 71 syl2an ( ( ∀ 𝑧 ( 𝑧 = { 𝐴 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ∧ ∀ 𝑧 ( 𝑧 = { 𝐴 , 𝐵 } → ∃ 𝑥𝑦 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) ) → ∃ 𝑥𝑦 ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) )
73 13 72 sylbi ( ⟨ 𝐴 , 𝐵 ⟩ ⊆ ( V × V ) → ∃ 𝑥𝑦 ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) )
74 simpr ( ( 𝐴 = { 𝑥 } ∧ 𝑧 = { 𝐴 } ) → 𝑧 = { 𝐴 } )
75 equid 𝑥 = 𝑥
76 75 jctl ( 𝐴 = { 𝑥 } → ( 𝑥 = 𝑥𝐴 = { 𝑥 } ) )
77 18 18 opeqsn ( ⟨ 𝑥 , 𝑥 ⟩ = { 𝐴 } ↔ ( 𝑥 = 𝑥𝐴 = { 𝑥 } ) )
78 76 77 sylibr ( 𝐴 = { 𝑥 } → ⟨ 𝑥 , 𝑥 ⟩ = { 𝐴 } )
79 78 adantr ( ( 𝐴 = { 𝑥 } ∧ 𝑧 = { 𝐴 } ) → ⟨ 𝑥 , 𝑥 ⟩ = { 𝐴 } )
80 74 79 eqtr4d ( ( 𝐴 = { 𝑥 } ∧ 𝑧 = { 𝐴 } ) → 𝑧 = ⟨ 𝑥 , 𝑥 ⟩ )
81 opeq12 ( ( 𝑤 = 𝑥𝑣 = 𝑥 ) → ⟨ 𝑤 , 𝑣 ⟩ = ⟨ 𝑥 , 𝑥 ⟩ )
82 81 eqeq2d ( ( 𝑤 = 𝑥𝑣 = 𝑥 ) → ( 𝑧 = ⟨ 𝑤 , 𝑣 ⟩ ↔ 𝑧 = ⟨ 𝑥 , 𝑥 ⟩ ) )
83 18 18 82 spc2ev ( 𝑧 = ⟨ 𝑥 , 𝑥 ⟩ → ∃ 𝑤𝑣 𝑧 = ⟨ 𝑤 , 𝑣 ⟩ )
84 80 83 syl ( ( 𝐴 = { 𝑥 } ∧ 𝑧 = { 𝐴 } ) → ∃ 𝑤𝑣 𝑧 = ⟨ 𝑤 , 𝑣 ⟩ )
85 84 adantlr ( ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ∧ 𝑧 = { 𝐴 } ) → ∃ 𝑤𝑣 𝑧 = ⟨ 𝑤 , 𝑣 ⟩ )
86 preq12 ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) → { 𝐴 , 𝐵 } = { { 𝑥 } , { 𝑥 , 𝑦 } } )
87 86 eqeq2d ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) → ( 𝑧 = { 𝐴 , 𝐵 } ↔ 𝑧 = { { 𝑥 } , { 𝑥 , 𝑦 } } ) )
88 87 biimpa ( ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ∧ 𝑧 = { 𝐴 , 𝐵 } ) → 𝑧 = { { 𝑥 } , { 𝑥 , 𝑦 } } )
89 18 19 dfop 𝑥 , 𝑦 ⟩ = { { 𝑥 } , { 𝑥 , 𝑦 } }
90 88 89 eqtr4di ( ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ∧ 𝑧 = { 𝐴 , 𝐵 } ) → 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ )
91 opeq12 ( ( 𝑤 = 𝑥𝑣 = 𝑦 ) → ⟨ 𝑤 , 𝑣 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ )
92 91 eqeq2d ( ( 𝑤 = 𝑥𝑣 = 𝑦 ) → ( 𝑧 = ⟨ 𝑤 , 𝑣 ⟩ ↔ 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ) )
93 18 19 92 spc2ev ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ∃ 𝑤𝑣 𝑧 = ⟨ 𝑤 , 𝑣 ⟩ )
94 90 93 syl ( ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ∧ 𝑧 = { 𝐴 , 𝐵 } ) → ∃ 𝑤𝑣 𝑧 = ⟨ 𝑤 , 𝑣 ⟩ )
95 85 94 jaodan ( ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) ∧ ( 𝑧 = { 𝐴 } ∨ 𝑧 = { 𝐴 , 𝐵 } ) ) → ∃ 𝑤𝑣 𝑧 = ⟨ 𝑤 , 𝑣 ⟩ )
96 95 ex ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) → ( ( 𝑧 = { 𝐴 } ∨ 𝑧 = { 𝐴 , 𝐵 } ) → ∃ 𝑤𝑣 𝑧 = ⟨ 𝑤 , 𝑣 ⟩ ) )
97 elvv ( 𝑧 ∈ ( V × V ) ↔ ∃ 𝑤𝑣 𝑧 = ⟨ 𝑤 , 𝑣 ⟩ )
98 96 5 97 3imtr4g ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) → ( 𝑧 ∈ ⟨ 𝐴 , 𝐵 ⟩ → 𝑧 ∈ ( V × V ) ) )
99 98 ssrdv ( ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) → ⟨ 𝐴 , 𝐵 ⟩ ⊆ ( V × V ) )
100 99 exlimivv ( ∃ 𝑥𝑦 ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) → ⟨ 𝐴 , 𝐵 ⟩ ⊆ ( V × V ) )
101 73 100 impbii ( ⟨ 𝐴 , 𝐵 ⟩ ⊆ ( V × V ) ↔ ∃ 𝑥𝑦 ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) )
102 3 101 bitri ( Rel ⟨ 𝐴 , 𝐵 ⟩ ↔ ∃ 𝑥𝑦 ( 𝐴 = { 𝑥 } ∧ 𝐵 = { 𝑥 , 𝑦 } ) )