Metamath Proof Explorer


Theorem relprcnfsupp

Description: A proper class is never finitely supported. (Contributed by AV, 7-Jun-2019)

Ref Expression
Assertion relprcnfsupp ( ¬ 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍 )

Proof

Step Hyp Ref Expression
1 relfsupp Rel finSupp
2 1 brrelex1i ( 𝐴 finSupp 𝑍𝐴 ∈ V )
3 2 con3i ( ¬ 𝐴 ∈ V → ¬ 𝐴 finSupp 𝑍 )