| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rel | ⊢ ( Rel  dom  𝐴  ↔  dom  𝐴  ⊆  ( V  ×  V ) ) | 
						
							| 2 | 1 | anbi2i | ⊢ ( ( Rel  𝐴  ∧  Rel  dom  𝐴 )  ↔  ( Rel  𝐴  ∧  dom  𝐴  ⊆  ( V  ×  V ) ) ) | 
						
							| 3 |  | relssdmrn | ⊢ ( Rel  𝐴  →  𝐴  ⊆  ( dom  𝐴  ×  ran  𝐴 ) ) | 
						
							| 4 |  | ssv | ⊢ ran  𝐴  ⊆  V | 
						
							| 5 |  | xpss12 | ⊢ ( ( dom  𝐴  ⊆  ( V  ×  V )  ∧  ran  𝐴  ⊆  V )  →  ( dom  𝐴  ×  ran  𝐴 )  ⊆  ( ( V  ×  V )  ×  V ) ) | 
						
							| 6 | 4 5 | mpan2 | ⊢ ( dom  𝐴  ⊆  ( V  ×  V )  →  ( dom  𝐴  ×  ran  𝐴 )  ⊆  ( ( V  ×  V )  ×  V ) ) | 
						
							| 7 | 3 6 | sylan9ss | ⊢ ( ( Rel  𝐴  ∧  dom  𝐴  ⊆  ( V  ×  V ) )  →  𝐴  ⊆  ( ( V  ×  V )  ×  V ) ) | 
						
							| 8 |  | xpss | ⊢ ( ( V  ×  V )  ×  V )  ⊆  ( V  ×  V ) | 
						
							| 9 |  | sstr | ⊢ ( ( 𝐴  ⊆  ( ( V  ×  V )  ×  V )  ∧  ( ( V  ×  V )  ×  V )  ⊆  ( V  ×  V ) )  →  𝐴  ⊆  ( V  ×  V ) ) | 
						
							| 10 | 8 9 | mpan2 | ⊢ ( 𝐴  ⊆  ( ( V  ×  V )  ×  V )  →  𝐴  ⊆  ( V  ×  V ) ) | 
						
							| 11 |  | df-rel | ⊢ ( Rel  𝐴  ↔  𝐴  ⊆  ( V  ×  V ) ) | 
						
							| 12 | 10 11 | sylibr | ⊢ ( 𝐴  ⊆  ( ( V  ×  V )  ×  V )  →  Rel  𝐴 ) | 
						
							| 13 |  | dmss | ⊢ ( 𝐴  ⊆  ( ( V  ×  V )  ×  V )  →  dom  𝐴  ⊆  dom  ( ( V  ×  V )  ×  V ) ) | 
						
							| 14 |  | vn0 | ⊢ V  ≠  ∅ | 
						
							| 15 |  | dmxp | ⊢ ( V  ≠  ∅  →  dom  ( ( V  ×  V )  ×  V )  =  ( V  ×  V ) ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ dom  ( ( V  ×  V )  ×  V )  =  ( V  ×  V ) | 
						
							| 17 | 13 16 | sseqtrdi | ⊢ ( 𝐴  ⊆  ( ( V  ×  V )  ×  V )  →  dom  𝐴  ⊆  ( V  ×  V ) ) | 
						
							| 18 | 12 17 | jca | ⊢ ( 𝐴  ⊆  ( ( V  ×  V )  ×  V )  →  ( Rel  𝐴  ∧  dom  𝐴  ⊆  ( V  ×  V ) ) ) | 
						
							| 19 | 7 18 | impbii | ⊢ ( ( Rel  𝐴  ∧  dom  𝐴  ⊆  ( V  ×  V ) )  ↔  𝐴  ⊆  ( ( V  ×  V )  ×  V ) ) | 
						
							| 20 | 2 19 | bitri | ⊢ ( ( Rel  𝐴  ∧  Rel  dom  𝐴 )  ↔  𝐴  ⊆  ( ( V  ×  V )  ×  V ) ) |