Step |
Hyp |
Ref |
Expression |
1 |
|
df-rel |
⊢ ( Rel dom 𝐴 ↔ dom 𝐴 ⊆ ( V × V ) ) |
2 |
1
|
anbi2i |
⊢ ( ( Rel 𝐴 ∧ Rel dom 𝐴 ) ↔ ( Rel 𝐴 ∧ dom 𝐴 ⊆ ( V × V ) ) ) |
3 |
|
relssdmrn |
⊢ ( Rel 𝐴 → 𝐴 ⊆ ( dom 𝐴 × ran 𝐴 ) ) |
4 |
|
ssv |
⊢ ran 𝐴 ⊆ V |
5 |
|
xpss12 |
⊢ ( ( dom 𝐴 ⊆ ( V × V ) ∧ ran 𝐴 ⊆ V ) → ( dom 𝐴 × ran 𝐴 ) ⊆ ( ( V × V ) × V ) ) |
6 |
4 5
|
mpan2 |
⊢ ( dom 𝐴 ⊆ ( V × V ) → ( dom 𝐴 × ran 𝐴 ) ⊆ ( ( V × V ) × V ) ) |
7 |
3 6
|
sylan9ss |
⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ ( V × V ) ) → 𝐴 ⊆ ( ( V × V ) × V ) ) |
8 |
|
xpss |
⊢ ( ( V × V ) × V ) ⊆ ( V × V ) |
9 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ( ( V × V ) × V ) ∧ ( ( V × V ) × V ) ⊆ ( V × V ) ) → 𝐴 ⊆ ( V × V ) ) |
10 |
8 9
|
mpan2 |
⊢ ( 𝐴 ⊆ ( ( V × V ) × V ) → 𝐴 ⊆ ( V × V ) ) |
11 |
|
df-rel |
⊢ ( Rel 𝐴 ↔ 𝐴 ⊆ ( V × V ) ) |
12 |
10 11
|
sylibr |
⊢ ( 𝐴 ⊆ ( ( V × V ) × V ) → Rel 𝐴 ) |
13 |
|
dmss |
⊢ ( 𝐴 ⊆ ( ( V × V ) × V ) → dom 𝐴 ⊆ dom ( ( V × V ) × V ) ) |
14 |
|
vn0 |
⊢ V ≠ ∅ |
15 |
|
dmxp |
⊢ ( V ≠ ∅ → dom ( ( V × V ) × V ) = ( V × V ) ) |
16 |
14 15
|
ax-mp |
⊢ dom ( ( V × V ) × V ) = ( V × V ) |
17 |
13 16
|
sseqtrdi |
⊢ ( 𝐴 ⊆ ( ( V × V ) × V ) → dom 𝐴 ⊆ ( V × V ) ) |
18 |
12 17
|
jca |
⊢ ( 𝐴 ⊆ ( ( V × V ) × V ) → ( Rel 𝐴 ∧ dom 𝐴 ⊆ ( V × V ) ) ) |
19 |
7 18
|
impbii |
⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ ( V × V ) ) ↔ 𝐴 ⊆ ( ( V × V ) × V ) ) |
20 |
2 19
|
bitri |
⊢ ( ( Rel 𝐴 ∧ Rel dom 𝐴 ) ↔ 𝐴 ⊆ ( ( V × V ) × V ) ) |