Metamath Proof Explorer


Theorem relres

Description: A restriction is a relation. Exercise 12 of TakeutiZaring p. 25. (Contributed by NM, 2-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion relres Rel ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 df-res ( 𝐴𝐵 ) = ( 𝐴 ∩ ( 𝐵 × V ) )
2 inss2 ( 𝐴 ∩ ( 𝐵 × V ) ) ⊆ ( 𝐵 × V )
3 1 2 eqsstri ( 𝐴𝐵 ) ⊆ ( 𝐵 × V )
4 relxp Rel ( 𝐵 × V )
5 relss ( ( 𝐴𝐵 ) ⊆ ( 𝐵 × V ) → ( Rel ( 𝐵 × V ) → Rel ( 𝐴𝐵 ) ) )
6 3 4 5 mp2 Rel ( 𝐴𝐵 )