| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resundir | ⊢ ( ( 𝐴  ∪  𝐵 )  ↾  dom  𝐴 )  =  ( ( 𝐴  ↾  dom  𝐴 )  ∪  ( 𝐵  ↾  dom  𝐴 ) ) | 
						
							| 2 |  | resdm | ⊢ ( Rel  𝐴  →  ( 𝐴  ↾  dom  𝐴 )  =  𝐴 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( Rel  𝐴  ∧  ( dom  𝐴  ∩  dom  𝐵 )  =  ∅ )  →  ( 𝐴  ↾  dom  𝐴 )  =  𝐴 ) | 
						
							| 4 |  | dmres | ⊢ dom  ( 𝐵  ↾  dom  𝐴 )  =  ( dom  𝐴  ∩  dom  𝐵 ) | 
						
							| 5 |  | simpr | ⊢ ( ( Rel  𝐴  ∧  ( dom  𝐴  ∩  dom  𝐵 )  =  ∅ )  →  ( dom  𝐴  ∩  dom  𝐵 )  =  ∅ ) | 
						
							| 6 | 4 5 | eqtrid | ⊢ ( ( Rel  𝐴  ∧  ( dom  𝐴  ∩  dom  𝐵 )  =  ∅ )  →  dom  ( 𝐵  ↾  dom  𝐴 )  =  ∅ ) | 
						
							| 7 |  | relres | ⊢ Rel  ( 𝐵  ↾  dom  𝐴 ) | 
						
							| 8 |  | reldm0 | ⊢ ( Rel  ( 𝐵  ↾  dom  𝐴 )  →  ( ( 𝐵  ↾  dom  𝐴 )  =  ∅  ↔  dom  ( 𝐵  ↾  dom  𝐴 )  =  ∅ ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( ( 𝐵  ↾  dom  𝐴 )  =  ∅  ↔  dom  ( 𝐵  ↾  dom  𝐴 )  =  ∅ ) | 
						
							| 10 | 6 9 | sylibr | ⊢ ( ( Rel  𝐴  ∧  ( dom  𝐴  ∩  dom  𝐵 )  =  ∅ )  →  ( 𝐵  ↾  dom  𝐴 )  =  ∅ ) | 
						
							| 11 | 3 10 | uneq12d | ⊢ ( ( Rel  𝐴  ∧  ( dom  𝐴  ∩  dom  𝐵 )  =  ∅ )  →  ( ( 𝐴  ↾  dom  𝐴 )  ∪  ( 𝐵  ↾  dom  𝐴 ) )  =  ( 𝐴  ∪  ∅ ) ) | 
						
							| 12 |  | un0 | ⊢ ( 𝐴  ∪  ∅ )  =  𝐴 | 
						
							| 13 | 11 12 | eqtrdi | ⊢ ( ( Rel  𝐴  ∧  ( dom  𝐴  ∩  dom  𝐵 )  =  ∅ )  →  ( ( 𝐴  ↾  dom  𝐴 )  ∪  ( 𝐵  ↾  dom  𝐴 ) )  =  𝐴 ) | 
						
							| 14 | 1 13 | eqtrid | ⊢ ( ( Rel  𝐴  ∧  ( dom  𝐴  ∩  dom  𝐵 )  =  ∅ )  →  ( ( 𝐴  ∪  𝐵 )  ↾  dom  𝐴 )  =  𝐴 ) |