Metamath Proof Explorer


Theorem relresfld

Description: Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012)

Ref Expression
Assertion relresfld ( Rel 𝑅 → ( 𝑅 𝑅 ) = 𝑅 )

Proof

Step Hyp Ref Expression
1 relfld ( Rel 𝑅 𝑅 = ( dom 𝑅 ∪ ran 𝑅 ) )
2 1 reseq2d ( Rel 𝑅 → ( 𝑅 𝑅 ) = ( 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) )
3 resundi ( 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( ( 𝑅 ↾ dom 𝑅 ) ∪ ( 𝑅 ↾ ran 𝑅 ) )
4 eqtr ( ( ( 𝑅 𝑅 ) = ( 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∧ ( 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( ( 𝑅 ↾ dom 𝑅 ) ∪ ( 𝑅 ↾ ran 𝑅 ) ) ) → ( 𝑅 𝑅 ) = ( ( 𝑅 ↾ dom 𝑅 ) ∪ ( 𝑅 ↾ ran 𝑅 ) ) )
5 resss ( 𝑅 ↾ ran 𝑅 ) ⊆ 𝑅
6 resdm ( Rel 𝑅 → ( 𝑅 ↾ dom 𝑅 ) = 𝑅 )
7 ssequn2 ( ( 𝑅 ↾ ran 𝑅 ) ⊆ 𝑅 ↔ ( 𝑅 ∪ ( 𝑅 ↾ ran 𝑅 ) ) = 𝑅 )
8 uneq1 ( ( 𝑅 ↾ dom 𝑅 ) = 𝑅 → ( ( 𝑅 ↾ dom 𝑅 ) ∪ ( 𝑅 ↾ ran 𝑅 ) ) = ( 𝑅 ∪ ( 𝑅 ↾ ran 𝑅 ) ) )
9 8 eqeq2d ( ( 𝑅 ↾ dom 𝑅 ) = 𝑅 → ( ( 𝑅 𝑅 ) = ( ( 𝑅 ↾ dom 𝑅 ) ∪ ( 𝑅 ↾ ran 𝑅 ) ) ↔ ( 𝑅 𝑅 ) = ( 𝑅 ∪ ( 𝑅 ↾ ran 𝑅 ) ) ) )
10 eqtr ( ( ( 𝑅 𝑅 ) = ( 𝑅 ∪ ( 𝑅 ↾ ran 𝑅 ) ) ∧ ( 𝑅 ∪ ( 𝑅 ↾ ran 𝑅 ) ) = 𝑅 ) → ( 𝑅 𝑅 ) = 𝑅 )
11 10 ex ( ( 𝑅 𝑅 ) = ( 𝑅 ∪ ( 𝑅 ↾ ran 𝑅 ) ) → ( ( 𝑅 ∪ ( 𝑅 ↾ ran 𝑅 ) ) = 𝑅 → ( 𝑅 𝑅 ) = 𝑅 ) )
12 9 11 syl6bi ( ( 𝑅 ↾ dom 𝑅 ) = 𝑅 → ( ( 𝑅 𝑅 ) = ( ( 𝑅 ↾ dom 𝑅 ) ∪ ( 𝑅 ↾ ran 𝑅 ) ) → ( ( 𝑅 ∪ ( 𝑅 ↾ ran 𝑅 ) ) = 𝑅 → ( 𝑅 𝑅 ) = 𝑅 ) ) )
13 12 com3r ( ( 𝑅 ∪ ( 𝑅 ↾ ran 𝑅 ) ) = 𝑅 → ( ( 𝑅 ↾ dom 𝑅 ) = 𝑅 → ( ( 𝑅 𝑅 ) = ( ( 𝑅 ↾ dom 𝑅 ) ∪ ( 𝑅 ↾ ran 𝑅 ) ) → ( 𝑅 𝑅 ) = 𝑅 ) ) )
14 7 13 sylbi ( ( 𝑅 ↾ ran 𝑅 ) ⊆ 𝑅 → ( ( 𝑅 ↾ dom 𝑅 ) = 𝑅 → ( ( 𝑅 𝑅 ) = ( ( 𝑅 ↾ dom 𝑅 ) ∪ ( 𝑅 ↾ ran 𝑅 ) ) → ( 𝑅 𝑅 ) = 𝑅 ) ) )
15 5 6 14 mpsyl ( Rel 𝑅 → ( ( 𝑅 𝑅 ) = ( ( 𝑅 ↾ dom 𝑅 ) ∪ ( 𝑅 ↾ ran 𝑅 ) ) → ( 𝑅 𝑅 ) = 𝑅 ) )
16 4 15 syl5com ( ( ( 𝑅 𝑅 ) = ( 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ∧ ( 𝑅 ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) = ( ( 𝑅 ↾ dom 𝑅 ) ∪ ( 𝑅 ↾ ran 𝑅 ) ) ) → ( Rel 𝑅 → ( 𝑅 𝑅 ) = 𝑅 ) )
17 2 3 16 sylancl ( Rel 𝑅 → ( Rel 𝑅 → ( 𝑅 𝑅 ) = 𝑅 ) )
18 17 pm2.43i ( Rel 𝑅 → ( 𝑅 𝑅 ) = 𝑅 )