Metamath Proof Explorer


Theorem relsdom

Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998)

Ref Expression
Assertion relsdom Rel ≺

Proof

Step Hyp Ref Expression
1 reldom Rel ≼
2 reldif ( Rel ≼ → Rel ( ≼ ∖ ≈ ) )
3 df-sdom ≺ = ( ≼ ∖ ≈ )
4 3 releqi ( Rel ≺ ↔ Rel ( ≼ ∖ ≈ ) )
5 2 4 sylibr ( Rel ≼ → Rel ≺ )
6 1 5 ax-mp Rel ≺