Description: Strict dominance is a relation. (Contributed by NM, 31-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | relsdom | ⊢ Rel ≺ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom | ⊢ Rel ≼ | |
2 | reldif | ⊢ ( Rel ≼ → Rel ( ≼ ∖ ≈ ) ) | |
3 | df-sdom | ⊢ ≺ = ( ≼ ∖ ≈ ) | |
4 | 3 | releqi | ⊢ ( Rel ≺ ↔ Rel ( ≼ ∖ ≈ ) ) |
5 | 2 4 | sylibr | ⊢ ( Rel ≼ → Rel ≺ ) |
6 | 1 5 | ax-mp | ⊢ Rel ≺ |