| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relsng |
⊢ ( 𝐴 ∈ V → ( Rel { 𝐴 } ↔ 𝐴 ∈ ( V × V ) ) ) |
| 2 |
1
|
biimpcd |
⊢ ( Rel { 𝐴 } → ( 𝐴 ∈ V → 𝐴 ∈ ( V × V ) ) ) |
| 3 |
|
imor |
⊢ ( ( 𝐴 ∈ V → 𝐴 ∈ ( V × V ) ) ↔ ( ¬ 𝐴 ∈ V ∨ 𝐴 ∈ ( V × V ) ) ) |
| 4 |
2 3
|
sylib |
⊢ ( Rel { 𝐴 } → ( ¬ 𝐴 ∈ V ∨ 𝐴 ∈ ( V × V ) ) ) |
| 5 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
| 6 |
|
rel0 |
⊢ Rel ∅ |
| 7 |
|
releq |
⊢ ( { 𝐴 } = ∅ → ( Rel { 𝐴 } ↔ Rel ∅ ) ) |
| 8 |
6 7
|
mpbiri |
⊢ ( { 𝐴 } = ∅ → Rel { 𝐴 } ) |
| 9 |
5 8
|
sylbi |
⊢ ( ¬ 𝐴 ∈ V → Rel { 𝐴 } ) |
| 10 |
|
relsng |
⊢ ( 𝐴 ∈ ( V × V ) → ( Rel { 𝐴 } ↔ 𝐴 ∈ ( V × V ) ) ) |
| 11 |
10
|
ibir |
⊢ ( 𝐴 ∈ ( V × V ) → Rel { 𝐴 } ) |
| 12 |
9 11
|
jaoi |
⊢ ( ( ¬ 𝐴 ∈ V ∨ 𝐴 ∈ ( V × V ) ) → Rel { 𝐴 } ) |
| 13 |
4 12
|
impbii |
⊢ ( Rel { 𝐴 } ↔ ( ¬ 𝐴 ∈ V ∨ 𝐴 ∈ ( V × V ) ) ) |