Metamath Proof Explorer


Theorem relsng

Description: A singleton is a relation iff it is a singleton on an ordered pair. (Contributed by NM, 24-Sep-2013) (Revised by BJ, 12-Feb-2022)

Ref Expression
Assertion relsng ( 𝐴𝑉 → ( Rel { 𝐴 } ↔ 𝐴 ∈ ( V × V ) ) )

Proof

Step Hyp Ref Expression
1 df-rel ( Rel { 𝐴 } ↔ { 𝐴 } ⊆ ( V × V ) )
2 snssg ( 𝐴𝑉 → ( 𝐴 ∈ ( V × V ) ↔ { 𝐴 } ⊆ ( V × V ) ) )
3 1 2 bitr4id ( 𝐴𝑉 → ( Rel { 𝐴 } ↔ 𝐴 ∈ ( V × V ) ) )