Metamath Proof Explorer
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998) (Revised by Mario Carneiro, 26-Apr-2015)
|
|
Ref |
Expression |
|
Hypotheses |
relsn.1 |
⊢ 𝐴 ∈ V |
|
|
relsnop.2 |
⊢ 𝐵 ∈ V |
|
Assertion |
relsnop |
⊢ Rel { 〈 𝐴 , 𝐵 〉 } |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
relsn.1 |
⊢ 𝐴 ∈ V |
2 |
|
relsnop.2 |
⊢ 𝐵 ∈ V |
3 |
|
relsnopg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → Rel { 〈 𝐴 , 𝐵 〉 } ) |
4 |
1 2 3
|
mp2an |
⊢ Rel { 〈 𝐴 , 𝐵 〉 } |