Metamath Proof Explorer


Theorem relsnop

Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses relsn.1 𝐴 ∈ V
relsnop.2 𝐵 ∈ V
Assertion relsnop Rel { ⟨ 𝐴 , 𝐵 ⟩ }

Proof

Step Hyp Ref Expression
1 relsn.1 𝐴 ∈ V
2 relsnop.2 𝐵 ∈ V
3 relsnopg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → Rel { ⟨ 𝐴 , 𝐵 ⟩ } )
4 1 2 3 mp2an Rel { ⟨ 𝐴 , 𝐵 ⟩ }