Metamath Proof Explorer


Theorem relsnopg

Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998) (Revised by BJ, 12-Feb-2022)

Ref Expression
Assertion relsnopg ( ( 𝐴𝑉𝐵𝑊 ) → Rel { ⟨ 𝐴 , 𝐵 ⟩ } )

Proof

Step Hyp Ref Expression
1 opelvvg ( ( 𝐴𝑉𝐵𝑊 ) → ⟨ 𝐴 , 𝐵 ⟩ ∈ ( V × V ) )
2 opex 𝐴 , 𝐵 ⟩ ∈ V
3 relsng ( ⟨ 𝐴 , 𝐵 ⟩ ∈ V → ( Rel { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( V × V ) ) )
4 2 3 mp1i ( ( 𝐴𝑉𝐵𝑊 ) → ( Rel { ⟨ 𝐴 , 𝐵 ⟩ } ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( V × V ) ) )
5 1 4 mpbird ( ( 𝐴𝑉𝐵𝑊 ) → Rel { ⟨ 𝐴 , 𝐵 ⟩ } )