Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998) (Revised by BJ, 12-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | relsnopg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → Rel { 〈 𝐴 , 𝐵 〉 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvvg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) ) | |
2 | opex | ⊢ 〈 𝐴 , 𝐵 〉 ∈ V | |
3 | relsng | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ V → ( Rel { 〈 𝐴 , 𝐵 〉 } ↔ 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) ) ) | |
4 | 2 3 | mp1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( Rel { 〈 𝐴 , 𝐵 〉 } ↔ 〈 𝐴 , 𝐵 〉 ∈ ( V × V ) ) ) |
5 | 1 4 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → Rel { 〈 𝐴 , 𝐵 〉 } ) |