Description: A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of Mendelson p. 235. (Contributed by NM, 3-Aug-1994) (Proof shortened by SN, 23-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | relssdmrn | ⊢ ( Rel 𝐴 → 𝐴 ⊆ ( dom 𝐴 × ran 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( Rel 𝐴 → Rel 𝐴 ) | |
2 | vex | ⊢ 𝑥 ∈ V | |
3 | vex | ⊢ 𝑦 ∈ V | |
4 | 2 3 | opeldm | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴 ) |
5 | 2 3 | opelrn | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑦 ∈ ran 𝐴 ) |
6 | 4 5 | opelxpd | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ ( dom 𝐴 × ran 𝐴 ) ) |
7 | 6 | a1i | ⊢ ( Rel 𝐴 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ ( dom 𝐴 × ran 𝐴 ) ) ) |
8 | 1 7 | relssdv | ⊢ ( Rel 𝐴 → 𝐴 ⊆ ( dom 𝐴 × ran 𝐴 ) ) |