Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | relssdv.1 | ⊢ ( 𝜑 → Rel 𝐴 ) | |
| relssdv.2 | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) | ||
| Assertion | relssdv | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relssdv.1 | ⊢ ( 𝜑 → Rel 𝐴 ) | |
| 2 | relssdv.2 | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) | |
| 3 | 2 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
| 4 | ssrel | ⊢ ( Rel 𝐴 → ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) ) |
| 6 | 3 5 | mpbird | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |