Description: Inference from subclass principle for relations. (Contributed by NM, 31-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Hypotheses | relssi.1 | ⊢ Rel 𝐴 | |
relssi.2 | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) | ||
Assertion | relssi | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssi.1 | ⊢ Rel 𝐴 | |
2 | relssi.2 | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) | |
3 | ssrel | ⊢ ( Rel 𝐴 → ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) ) | |
4 | 1 3 | ax-mp | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) |
5 | 2 | ax-gen | ⊢ ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) |
6 | 4 5 | mpgbir | ⊢ 𝐴 ⊆ 𝐵 |