Metamath Proof Explorer


Theorem relssres

Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994)

Ref Expression
Assertion relssres ( ( Rel 𝐴 ∧ dom 𝐴𝐵 ) → ( 𝐴𝐵 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 simpl ( ( Rel 𝐴 ∧ dom 𝐴𝐵 ) → Rel 𝐴 )
2 vex 𝑥 ∈ V
3 vex 𝑦 ∈ V
4 2 3 opeldm ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴𝑥 ∈ dom 𝐴 )
5 ssel ( dom 𝐴𝐵 → ( 𝑥 ∈ dom 𝐴𝑥𝐵 ) )
6 4 5 syl5 ( dom 𝐴𝐵 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴𝑥𝐵 ) )
7 6 ancrd ( dom 𝐴𝐵 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ( 𝑥𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) ) )
8 3 opelresi ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐵 ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 ) )
9 7 8 syl6ibr ( dom 𝐴𝐵 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) ) )
10 9 adantl ( ( Rel 𝐴 ∧ dom 𝐴𝐵 ) → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 → ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) ) )
11 1 10 relssdv ( ( Rel 𝐴 ∧ dom 𝐴𝐵 ) → 𝐴 ⊆ ( 𝐴𝐵 ) )
12 resss ( 𝐴𝐵 ) ⊆ 𝐴
13 11 12 jctil ( ( Rel 𝐴 ∧ dom 𝐴𝐵 ) → ( ( 𝐴𝐵 ) ⊆ 𝐴𝐴 ⊆ ( 𝐴𝐵 ) ) )
14 eqss ( ( 𝐴𝐵 ) = 𝐴 ↔ ( ( 𝐴𝐵 ) ⊆ 𝐴𝐴 ⊆ ( 𝐴𝐵 ) ) )
15 13 14 sylibr ( ( Rel 𝐴 ∧ dom 𝐴𝐵 ) → ( 𝐴𝐵 ) = 𝐴 )