| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵 ) → Rel 𝐴 ) |
| 2 |
|
vex |
⊢ 𝑥 ∈ V |
| 3 |
|
vex |
⊢ 𝑦 ∈ V |
| 4 |
2 3
|
opeldm |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴 ) |
| 5 |
|
ssel |
⊢ ( dom 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ dom 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 6 |
4 5
|
syl5 |
⊢ ( dom 𝐴 ⊆ 𝐵 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 7 |
6
|
ancrd |
⊢ ( dom 𝐴 ⊆ 𝐵 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) |
| 8 |
3
|
opelresi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ↾ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) |
| 9 |
7 8
|
imbitrrdi |
⊢ ( dom 𝐴 ⊆ 𝐵 → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ↾ 𝐵 ) ) ) |
| 10 |
9
|
adantl |
⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ↾ 𝐵 ) ) ) |
| 11 |
1 10
|
relssdv |
⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ ( 𝐴 ↾ 𝐵 ) ) |
| 12 |
|
resss |
⊢ ( 𝐴 ↾ 𝐵 ) ⊆ 𝐴 |
| 13 |
11 12
|
jctil |
⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵 ) → ( ( 𝐴 ↾ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐴 ↾ 𝐵 ) ) ) |
| 14 |
|
eqss |
⊢ ( ( 𝐴 ↾ 𝐵 ) = 𝐴 ↔ ( ( 𝐴 ↾ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐴 ↾ 𝐵 ) ) ) |
| 15 |
13 14
|
sylibr |
⊢ ( ( Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵 ) → ( 𝐴 ↾ 𝐵 ) = 𝐴 ) |