Description: The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | reltpos | ⊢ Rel tpos 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposssxp | ⊢ tpos 𝐹 ⊆ ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) | |
2 | relxp | ⊢ Rel ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) | |
3 | relss | ⊢ ( tpos 𝐹 ⊆ ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) → ( Rel ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) → Rel tpos 𝐹 ) ) | |
4 | 1 2 3 | mp2 | ⊢ Rel tpos 𝐹 |