Description: For all real numbers there is a smaller real number. (Contributed by AV, 5-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | reltre | ⊢ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2rem | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 − 1 ) ∈ ℝ ) | |
2 | breq1 | ⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( 𝑦 < 𝑥 ↔ ( 𝑥 − 1 ) < 𝑥 ) ) | |
3 | 2 | adantl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 = ( 𝑥 − 1 ) ) → ( 𝑦 < 𝑥 ↔ ( 𝑥 − 1 ) < 𝑥 ) ) |
4 | ltm1 | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 − 1 ) < 𝑥 ) | |
5 | 1 3 4 | rspcedvd | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) |
6 | 5 | rgen | ⊢ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 |