Metamath Proof Explorer


Theorem reltre

Description: For all real numbers there is a smaller real number. (Contributed by AV, 5-Sep-2020)

Ref Expression
Assertion reltre 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥

Proof

Step Hyp Ref Expression
1 peano2rem ( 𝑥 ∈ ℝ → ( 𝑥 − 1 ) ∈ ℝ )
2 breq1 ( 𝑦 = ( 𝑥 − 1 ) → ( 𝑦 < 𝑥 ↔ ( 𝑥 − 1 ) < 𝑥 ) )
3 2 adantl ( ( 𝑥 ∈ ℝ ∧ 𝑦 = ( 𝑥 − 1 ) ) → ( 𝑦 < 𝑥 ↔ ( 𝑥 − 1 ) < 𝑥 ) )
4 ltm1 ( 𝑥 ∈ ℝ → ( 𝑥 − 1 ) < 𝑥 )
5 1 3 4 rspcedvd ( 𝑥 ∈ ℝ → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 )
6 5 rgen 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥