Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
⊢ ( 𝑥 ∈ ℝ* ↔ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) |
2 |
|
reltre |
⊢ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 |
3 |
2
|
rspec |
⊢ ( 𝑥 ∈ ℝ → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) |
4 |
3
|
a1d |
⊢ ( 𝑥 ∈ ℝ → ( -∞ < 𝑥 → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) ) |
5 |
|
0red |
⊢ ( 𝑥 = +∞ → 0 ∈ ℝ ) |
6 |
|
breq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 < 𝑥 ↔ 0 < 𝑥 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑥 = +∞ ∧ 𝑦 = 0 ) → ( 𝑦 < 𝑥 ↔ 0 < 𝑥 ) ) |
8 |
|
0ltpnf |
⊢ 0 < +∞ |
9 |
|
breq2 |
⊢ ( 𝑥 = +∞ → ( 0 < 𝑥 ↔ 0 < +∞ ) ) |
10 |
8 9
|
mpbiri |
⊢ ( 𝑥 = +∞ → 0 < 𝑥 ) |
11 |
5 7 10
|
rspcedvd |
⊢ ( 𝑥 = +∞ → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) |
12 |
11
|
a1d |
⊢ ( 𝑥 = +∞ → ( -∞ < 𝑥 → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) ) |
13 |
|
breq2 |
⊢ ( 𝑥 = -∞ → ( -∞ < 𝑥 ↔ -∞ < -∞ ) ) |
14 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
15 |
|
nltmnf |
⊢ ( -∞ ∈ ℝ* → ¬ -∞ < -∞ ) |
16 |
15
|
pm2.21d |
⊢ ( -∞ ∈ ℝ* → ( -∞ < -∞ → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) ) |
17 |
14 16
|
ax-mp |
⊢ ( -∞ < -∞ → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) |
18 |
13 17
|
syl6bi |
⊢ ( 𝑥 = -∞ → ( -∞ < 𝑥 → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) ) |
19 |
4 12 18
|
3jaoi |
⊢ ( ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) → ( -∞ < 𝑥 → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) ) |
20 |
1 19
|
sylbi |
⊢ ( 𝑥 ∈ ℝ* → ( -∞ < 𝑥 → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) ) |
21 |
20
|
rgen |
⊢ ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) |