| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elxr | ⊢ ( 𝑥  ∈  ℝ*  ↔  ( 𝑥  ∈  ℝ  ∨  𝑥  =  +∞  ∨  𝑥  =  -∞ ) ) | 
						
							| 2 |  | reltre | ⊢ ∀ 𝑥  ∈  ℝ ∃ 𝑦  ∈  ℝ 𝑦  <  𝑥 | 
						
							| 3 | 2 | rspec | ⊢ ( 𝑥  ∈  ℝ  →  ∃ 𝑦  ∈  ℝ 𝑦  <  𝑥 ) | 
						
							| 4 | 3 | a1d | ⊢ ( 𝑥  ∈  ℝ  →  ( -∞  <  𝑥  →  ∃ 𝑦  ∈  ℝ 𝑦  <  𝑥 ) ) | 
						
							| 5 |  | breq1 | ⊢ ( 𝑦  =  0  →  ( 𝑦  <  𝑥  ↔  0  <  𝑥 ) ) | 
						
							| 6 |  | 0red | ⊢ ( 𝑥  =  +∞  →  0  ∈  ℝ ) | 
						
							| 7 |  | 0ltpnf | ⊢ 0  <  +∞ | 
						
							| 8 |  | breq2 | ⊢ ( 𝑥  =  +∞  →  ( 0  <  𝑥  ↔  0  <  +∞ ) ) | 
						
							| 9 | 7 8 | mpbiri | ⊢ ( 𝑥  =  +∞  →  0  <  𝑥 ) | 
						
							| 10 | 5 6 9 | rspcedvdw | ⊢ ( 𝑥  =  +∞  →  ∃ 𝑦  ∈  ℝ 𝑦  <  𝑥 ) | 
						
							| 11 | 10 | a1d | ⊢ ( 𝑥  =  +∞  →  ( -∞  <  𝑥  →  ∃ 𝑦  ∈  ℝ 𝑦  <  𝑥 ) ) | 
						
							| 12 |  | breq2 | ⊢ ( 𝑥  =  -∞  →  ( -∞  <  𝑥  ↔  -∞  <  -∞ ) ) | 
						
							| 13 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 14 |  | nltmnf | ⊢ ( -∞  ∈  ℝ*  →  ¬  -∞  <  -∞ ) | 
						
							| 15 | 14 | pm2.21d | ⊢ ( -∞  ∈  ℝ*  →  ( -∞  <  -∞  →  ∃ 𝑦  ∈  ℝ 𝑦  <  𝑥 ) ) | 
						
							| 16 | 13 15 | ax-mp | ⊢ ( -∞  <  -∞  →  ∃ 𝑦  ∈  ℝ 𝑦  <  𝑥 ) | 
						
							| 17 | 12 16 | biimtrdi | ⊢ ( 𝑥  =  -∞  →  ( -∞  <  𝑥  →  ∃ 𝑦  ∈  ℝ 𝑦  <  𝑥 ) ) | 
						
							| 18 | 4 11 17 | 3jaoi | ⊢ ( ( 𝑥  ∈  ℝ  ∨  𝑥  =  +∞  ∨  𝑥  =  -∞ )  →  ( -∞  <  𝑥  →  ∃ 𝑦  ∈  ℝ 𝑦  <  𝑥 ) ) | 
						
							| 19 | 1 18 | sylbi | ⊢ ( 𝑥  ∈  ℝ*  →  ( -∞  <  𝑥  →  ∃ 𝑦  ∈  ℝ 𝑦  <  𝑥 ) ) | 
						
							| 20 | 19 | rgen | ⊢ ∀ 𝑥  ∈  ℝ* ( -∞  <  𝑥  →  ∃ 𝑦  ∈  ℝ 𝑦  <  𝑥 ) |