Metamath Proof Explorer


Theorem rembl

Description: The set of all real numbers is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion rembl ℝ ∈ dom vol

Proof

Step Hyp Ref Expression
1 dif0 ( ℝ ∖ ∅ ) = ℝ
2 0mbl ∅ ∈ dom vol
3 cmmbl ( ∅ ∈ dom vol → ( ℝ ∖ ∅ ) ∈ dom vol )
4 2 3 ax-mp ( ℝ ∖ ∅ ) ∈ dom vol
5 1 4 eqeltrri ℝ ∈ dom vol