Metamath Proof Explorer


Theorem remet

Description: The absolute value metric determines a metric space on the reals. (Contributed by NM, 10-Feb-2007)

Ref Expression
Hypothesis remet.1 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) )
Assertion remet 𝐷 ∈ ( Met ‘ ℝ )

Proof

Step Hyp Ref Expression
1 remet.1 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) )
2 cnmet ( abs ∘ − ) ∈ ( Met ‘ ℂ )
3 ax-resscn ℝ ⊆ ℂ
4 metres2 ( ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) ∧ ℝ ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( Met ‘ ℝ ) )
5 2 3 4 mp2an ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( Met ‘ ℝ )
6 1 5 eqeltri 𝐷 ∈ ( Met ‘ ℝ )