Description: The absolute value metric determines a metric space on the reals. (Contributed by NM, 10-Feb-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | remet.1 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
Assertion | remet | ⊢ 𝐷 ∈ ( Met ‘ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remet.1 | ⊢ 𝐷 = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) | |
2 | cnmet | ⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) | |
3 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
4 | metres2 | ⊢ ( ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) ∧ ℝ ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( Met ‘ ℝ ) ) | |
5 | 2 3 4 | mp2an | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( Met ‘ ℝ ) |
6 | 1 5 | eqeltri | ⊢ 𝐷 ∈ ( Met ‘ ℝ ) |