Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
2 |
|
remul |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
4 |
|
rere |
⊢ ( 𝐴 ∈ ℝ → ( ℜ ‘ 𝐴 ) = 𝐴 ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐴 ) = 𝐴 ) |
6 |
5
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) = ( 𝐴 · ( ℜ ‘ 𝐵 ) ) ) |
7 |
|
reim0 |
⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ 𝐴 ) = 0 ) |
8 |
7
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) = ( 0 · ( ℑ ‘ 𝐵 ) ) ) |
9 |
|
imcl |
⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
11 |
10
|
mul02d |
⊢ ( 𝐵 ∈ ℂ → ( 0 · ( ℑ ‘ 𝐵 ) ) = 0 ) |
12 |
8 11
|
sylan9eq |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) = 0 ) |
13 |
6 12
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) = ( ( 𝐴 · ( ℜ ‘ 𝐵 ) ) − 0 ) ) |
14 |
|
recl |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
15 |
14
|
recnd |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
16 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ℂ ) → ( 𝐴 · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) |
17 |
1 15 16
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) |
18 |
17
|
subid1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · ( ℜ ‘ 𝐵 ) ) − 0 ) = ( 𝐴 · ( ℜ ‘ 𝐵 ) ) ) |
19 |
3 13 18
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( ℜ ‘ 𝐵 ) ) ) |