Metamath Proof Explorer


Theorem remul2d

Description: Real part of a product. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses crred.1 ( 𝜑𝐴 ∈ ℝ )
remul2d.2 ( 𝜑𝐵 ∈ ℂ )
Assertion remul2d ( 𝜑 → ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( ℜ ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 crred.1 ( 𝜑𝐴 ∈ ℝ )
2 remul2d.2 ( 𝜑𝐵 ∈ ℂ )
3 remul2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( ℜ ‘ 𝐵 ) ) )
4 1 2 3 syl2anc ( 𝜑 → ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( ℜ ‘ 𝐵 ) ) )