Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
2 |
|
readdcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
3 |
|
renegcl |
⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ ) |
4 |
|
1re |
⊢ 1 ∈ ℝ |
5 |
1 2 3 4
|
cnsubglem |
⊢ ℝ ∈ ( SubGrp ‘ ℂfld ) |
6 |
|
eqid |
⊢ ( .g ‘ ℂfld ) = ( .g ‘ ℂfld ) |
7 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
8 |
|
eqid |
⊢ ( .g ‘ ℝfld ) = ( .g ‘ ℝfld ) |
9 |
6 7 8
|
subgmulg |
⊢ ( ( ℝ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝑁 ( .g ‘ ℂfld ) 𝐴 ) = ( 𝑁 ( .g ‘ ℝfld ) 𝐴 ) ) |
10 |
5 9
|
mp3an1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝑁 ( .g ‘ ℂfld ) 𝐴 ) = ( 𝑁 ( .g ‘ ℝfld ) 𝐴 ) ) |
11 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
13 |
|
cnfldmulg |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℂ ) → ( 𝑁 ( .g ‘ ℂfld ) 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
14 |
12 13
|
syldan |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝑁 ( .g ‘ ℂfld ) 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
15 |
10 14
|
eqtr3d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( 𝑁 ( .g ‘ ℝfld ) 𝐴 ) = ( 𝑁 · 𝐴 ) ) |