| Step |
Hyp |
Ref |
Expression |
| 1 |
|
replim |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 2 |
|
replim |
⊢ ( 𝐵 ∈ ℂ → 𝐵 = ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
| 3 |
1 2
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 4 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 6 |
5
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 7 |
|
ax-icn |
⊢ i ∈ ℂ |
| 8 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 10 |
9
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
| 11 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 12 |
7 10 11
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
| 13 |
6 12
|
addcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 14 |
|
recl |
⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 16 |
15
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 17 |
|
imcl |
⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
| 19 |
18
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ 𝐵 ) ∈ ℂ ) |
| 20 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 21 |
7 19 20
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 22 |
13 16 21
|
adddid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ( ℜ ‘ 𝐵 ) + ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ℜ ‘ 𝐵 ) ) + ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 23 |
6 12 16
|
adddird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ℜ ‘ 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 24 |
6 12 21
|
adddird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 25 |
23 24
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ℜ ‘ 𝐵 ) ) + ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ) + ( ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) ) |
| 26 |
5 15
|
remulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℝ ) |
| 27 |
26
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) |
| 28 |
12 21
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 29 |
12 16
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) |
| 30 |
6 21
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 31 |
27 28 29 30
|
add42d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) + ( ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ) + ( ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) ) |
| 32 |
7
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → i ∈ ℂ ) |
| 33 |
32 10 32 19
|
mul4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) = ( ( i · i ) · ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 34 |
|
ixi |
⊢ ( i · i ) = - 1 |
| 35 |
34
|
oveq1i |
⊢ ( ( i · i ) · ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) = ( - 1 · ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) |
| 36 |
9 18
|
remulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℝ ) |
| 37 |
36
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 38 |
37
|
mulm1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 1 · ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) = - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) |
| 39 |
35 38
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · i ) · ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) = - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) |
| 40 |
33 39
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) = - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) |
| 41 |
40
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 42 |
27 37
|
negsubd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + - ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 43 |
41 42
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 44 |
9 15
|
remulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℝ ) |
| 45 |
44
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) |
| 46 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ∈ ℂ ) → ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 47 |
7 45 46
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 48 |
5 18
|
remulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℝ ) |
| 49 |
48
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) |
| 50 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ∈ ℂ ) → ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 51 |
7 49 50
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 52 |
47 51
|
addcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) + ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 53 |
32 10 16
|
mulassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) = ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 54 |
6 32 19
|
mul12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) = ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 55 |
53 54
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) + ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 56 |
32 49 45
|
adddid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) = ( ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 57 |
52 55 56
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 58 |
43 57
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) + ( ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) + ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) |
| 59 |
25 31 58
|
3eqtr2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ℜ ‘ 𝐵 ) ) + ( ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) |
| 60 |
3 22 59
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) |
| 61 |
60
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( ℜ ‘ ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) ) |
| 62 |
26 36
|
resubcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 63 |
48 44
|
readdcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 64 |
|
crre |
⊢ ( ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ ℝ ∧ ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ∈ ℝ ) → ( ℜ ‘ ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 65 |
62 63 64
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 66 |
61 65
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ) |
| 67 |
60
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( ℑ ‘ ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) ) |
| 68 |
|
crim |
⊢ ( ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ∈ ℝ ∧ ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ∈ ℝ ) → ( ℑ ‘ ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 69 |
62 63 68
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 70 |
67 69
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 71 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 72 |
|
remim |
⊢ ( ( 𝐴 · 𝐵 ) ∈ ℂ → ( ∗ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ℜ ‘ ( 𝐴 · 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ) ) ) |
| 73 |
71 72
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ℜ ‘ ( 𝐴 · 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ) ) ) |
| 74 |
|
remim |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) = ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 75 |
|
remim |
⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) = ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) |
| 76 |
74 75
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 77 |
16 21
|
subcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 78 |
6 12 77
|
subdird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) − ( i · ( ℑ ‘ 𝐴 ) ) ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) ) |
| 79 |
27 30 29 28
|
subadd4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) − ( ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) − ( ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 80 |
6 16 21
|
subdid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐴 ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 81 |
12 16 21
|
subdid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) = ( ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 82 |
80 81
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) − ( ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) ) |
| 83 |
65 61 43
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) |
| 84 |
70
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ) = ( i · ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 85 |
54 53
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ) = ( ( i · ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) + ( i · ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 86 |
56 84 85
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ) ) |
| 87 |
83 86
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ ( 𝐴 · 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ) ) = ( ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( i · ( ℑ ‘ 𝐵 ) ) ) ) − ( ( ( ℜ ‘ 𝐴 ) · ( i · ( ℑ ‘ 𝐵 ) ) ) + ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ℜ ‘ 𝐵 ) ) ) ) ) |
| 88 |
79 82 87
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ℜ ‘ 𝐴 ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) − ( ( i · ( ℑ ‘ 𝐴 ) ) · ( ( ℜ ‘ 𝐵 ) − ( i · ( ℑ ‘ 𝐵 ) ) ) ) ) = ( ( ℜ ‘ ( 𝐴 · 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ) ) ) |
| 89 |
76 78 88
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐵 ) ) = ( ( ℜ ‘ ( 𝐴 · 𝐵 ) ) − ( i · ( ℑ ‘ ( 𝐴 · 𝐵 ) ) ) ) ) |
| 90 |
73 89
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐵 ) ) ) |
| 91 |
66 70 90
|
3jca |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) − ( ( ℑ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) ) ∧ ( ℑ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ( ℜ ‘ 𝐴 ) · ( ℑ ‘ 𝐵 ) ) + ( ( ℑ ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) ∧ ( ∗ ‘ ( 𝐴 · 𝐵 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ 𝐵 ) ) ) ) |