Metamath Proof Explorer


Theorem rencldnfi

Description: A set of real numbers which comes arbitrarily close to some target yet excludes it is infinite. The work is done in rencldnfilem using infima; this theorem removes the requirement that A be nonempty. (Contributed by Stefan O'Rear, 19-Oct-2014)

Ref Expression
Assertion rencldnfi ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐵𝐴 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐴 ( abs ‘ ( 𝑦𝐵 ) ) < 𝑥 ) → ¬ 𝐴 ∈ Fin )

Proof

Step Hyp Ref Expression
1 simpl1 ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐵𝐴 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐴 ( abs ‘ ( 𝑦𝐵 ) ) < 𝑥 ) → 𝐴 ⊆ ℝ )
2 simpl2 ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐵𝐴 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐴 ( abs ‘ ( 𝑦𝐵 ) ) < 𝑥 ) → 𝐵 ∈ ℝ )
3 rexn0 ( ∃ 𝑦𝐴 ( abs ‘ ( 𝑦𝐵 ) ) < 𝑥𝐴 ≠ ∅ )
4 3 ralimi ( ∀ 𝑥 ∈ ℝ+𝑦𝐴 ( abs ‘ ( 𝑦𝐵 ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ 𝐴 ≠ ∅ )
5 1rp 1 ∈ ℝ+
6 ne0i ( 1 ∈ ℝ+ → ℝ+ ≠ ∅ )
7 r19.3rzv ( ℝ+ ≠ ∅ → ( 𝐴 ≠ ∅ ↔ ∀ 𝑥 ∈ ℝ+ 𝐴 ≠ ∅ ) )
8 5 6 7 mp2b ( 𝐴 ≠ ∅ ↔ ∀ 𝑥 ∈ ℝ+ 𝐴 ≠ ∅ )
9 4 8 sylibr ( ∀ 𝑥 ∈ ℝ+𝑦𝐴 ( abs ‘ ( 𝑦𝐵 ) ) < 𝑥𝐴 ≠ ∅ )
10 9 adantl ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐵𝐴 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐴 ( abs ‘ ( 𝑦𝐵 ) ) < 𝑥 ) → 𝐴 ≠ ∅ )
11 simpl3 ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐵𝐴 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐴 ( abs ‘ ( 𝑦𝐵 ) ) < 𝑥 ) → ¬ 𝐵𝐴 )
12 10 11 jca ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐵𝐴 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐴 ( abs ‘ ( 𝑦𝐵 ) ) < 𝑥 ) → ( 𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴 ) )
13 simpr ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐵𝐴 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐴 ( abs ‘ ( 𝑦𝐵 ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+𝑦𝐴 ( abs ‘ ( 𝑦𝐵 ) ) < 𝑥 )
14 rencldnfilem ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴 ) ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐴 ( abs ‘ ( 𝑦𝐵 ) ) < 𝑥 ) → ¬ 𝐴 ∈ Fin )
15 1 2 12 13 14 syl31anc ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ 𝐵𝐴 ) ∧ ∀ 𝑥 ∈ ℝ+𝑦𝐴 ( abs ‘ ( 𝑦𝐵 ) ) < 𝑥 ) → ¬ 𝐴 ∈ Fin )