Step |
Hyp |
Ref |
Expression |
1 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
3 |
|
ax-icn |
⊢ i ∈ ℂ |
4 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
5 |
4
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
6 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
7 |
3 5 6
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
8 |
2 7
|
negdid |
⊢ ( 𝐴 ∈ ℂ → - ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) = ( - ( ℜ ‘ 𝐴 ) + - ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
9 |
|
replim |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
10 |
9
|
negeqd |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 = - ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
11 |
|
mulneg2 |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · - ( ℑ ‘ 𝐴 ) ) = - ( i · ( ℑ ‘ 𝐴 ) ) ) |
12 |
3 5 11
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · - ( ℑ ‘ 𝐴 ) ) = - ( i · ( ℑ ‘ 𝐴 ) ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( - ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) = ( - ( ℜ ‘ 𝐴 ) + - ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
14 |
8 10 13
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 = ( - ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) = ( ℜ ‘ ( - ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) ) ) |
16 |
1
|
renegcld |
⊢ ( 𝐴 ∈ ℂ → - ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
17 |
4
|
renegcld |
⊢ ( 𝐴 ∈ ℂ → - ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
18 |
|
crre |
⊢ ( ( - ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ - ( ℑ ‘ 𝐴 ) ∈ ℝ ) → ( ℜ ‘ ( - ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) ) = - ( ℜ ‘ 𝐴 ) ) |
19 |
16 17 18
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( - ( ℜ ‘ 𝐴 ) + ( i · - ( ℑ ‘ 𝐴 ) ) ) ) = - ( ℜ ‘ 𝐴 ) ) |
20 |
15 19
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) |