Description: Closure law for negative of reals. The weak deduction theorem dedth is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli , to an antecedent. (Contributed by NM, 20-Jan-1997) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeq | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℝ , 𝐴 , 1 ) → - 𝐴 = - if ( 𝐴 ∈ ℝ , 𝐴 , 1 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℝ , 𝐴 , 1 ) → ( - 𝐴 ∈ ℝ ↔ - if ( 𝐴 ∈ ℝ , 𝐴 , 1 ) ∈ ℝ ) ) |
| 3 | 1re | ⊢ 1 ∈ ℝ | |
| 4 | 3 | elimel | ⊢ if ( 𝐴 ∈ ℝ , 𝐴 , 1 ) ∈ ℝ |
| 5 | 4 | renegcli | ⊢ - if ( 𝐴 ∈ ℝ , 𝐴 , 1 ) ∈ ℝ |
| 6 | 2 5 | dedth | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |