| Step | Hyp | Ref | Expression | 
						
							| 1 |  | renegcl.1 | ⊢ 𝐴  ∈  ℝ | 
						
							| 2 |  | ax-rnegex | ⊢ ( 𝐴  ∈  ℝ  →  ∃ 𝑥  ∈  ℝ ( 𝐴  +  𝑥 )  =  0 ) | 
						
							| 3 |  | recn | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ ) | 
						
							| 4 |  | df-neg | ⊢ - 𝐴  =  ( 0  −  𝐴 ) | 
						
							| 5 | 4 | eqeq1i | ⊢ ( - 𝐴  =  𝑥  ↔  ( 0  −  𝐴 )  =  𝑥 ) | 
						
							| 6 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 7 | 1 | recni | ⊢ 𝐴  ∈  ℂ | 
						
							| 8 |  | subadd | ⊢ ( ( 0  ∈  ℂ  ∧  𝐴  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( ( 0  −  𝐴 )  =  𝑥  ↔  ( 𝐴  +  𝑥 )  =  0 ) ) | 
						
							| 9 | 6 7 8 | mp3an12 | ⊢ ( 𝑥  ∈  ℂ  →  ( ( 0  −  𝐴 )  =  𝑥  ↔  ( 𝐴  +  𝑥 )  =  0 ) ) | 
						
							| 10 | 5 9 | bitrid | ⊢ ( 𝑥  ∈  ℂ  →  ( - 𝐴  =  𝑥  ↔  ( 𝐴  +  𝑥 )  =  0 ) ) | 
						
							| 11 | 3 10 | syl | ⊢ ( 𝑥  ∈  ℝ  →  ( - 𝐴  =  𝑥  ↔  ( 𝐴  +  𝑥 )  =  0 ) ) | 
						
							| 12 |  | eleq1a | ⊢ ( 𝑥  ∈  ℝ  →  ( - 𝐴  =  𝑥  →  - 𝐴  ∈  ℝ ) ) | 
						
							| 13 | 11 12 | sylbird | ⊢ ( 𝑥  ∈  ℝ  →  ( ( 𝐴  +  𝑥 )  =  0  →  - 𝐴  ∈  ℝ ) ) | 
						
							| 14 | 13 | rexlimiv | ⊢ ( ∃ 𝑥  ∈  ℝ ( 𝐴  +  𝑥 )  =  0  →  - 𝐴  ∈  ℝ ) | 
						
							| 15 | 1 2 14 | mp2b | ⊢ - 𝐴  ∈  ℝ |