Description: Real part of negative. (Contributed by NM, 2-Aug-1999)
Ref | Expression | ||
---|---|---|---|
Hypothesis | recl.1 | ⊢ 𝐴 ∈ ℂ | |
Assertion | renegi | ⊢ ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recl.1 | ⊢ 𝐴 ∈ ℂ | |
2 | reneg | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) |