Step |
Hyp |
Ref |
Expression |
1 |
|
renegmulnnass.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
renegmulnnass.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( ( 0 −ℝ 𝐴 ) · 𝑥 ) = ( ( 0 −ℝ 𝐴 ) · 1 ) ) |
4 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 1 ) ) |
5 |
4
|
oveq2d |
⊢ ( 𝑥 = 1 → ( 0 −ℝ ( 𝐴 · 𝑥 ) ) = ( 0 −ℝ ( 𝐴 · 1 ) ) ) |
6 |
3 5
|
eqeq12d |
⊢ ( 𝑥 = 1 → ( ( ( 0 −ℝ 𝐴 ) · 𝑥 ) = ( 0 −ℝ ( 𝐴 · 𝑥 ) ) ↔ ( ( 0 −ℝ 𝐴 ) · 1 ) = ( 0 −ℝ ( 𝐴 · 1 ) ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 0 −ℝ 𝐴 ) · 𝑥 ) = ( ( 0 −ℝ 𝐴 ) · 𝑦 ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑦 ) ) |
9 |
8
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 0 −ℝ ( 𝐴 · 𝑥 ) ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) |
10 |
7 9
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 0 −ℝ 𝐴 ) · 𝑥 ) = ( 0 −ℝ ( 𝐴 · 𝑥 ) ) ↔ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 0 −ℝ 𝐴 ) · 𝑥 ) = ( ( 0 −ℝ 𝐴 ) · ( 𝑦 + 1 ) ) ) |
12 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐴 · 𝑥 ) = ( 𝐴 · ( 𝑦 + 1 ) ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 0 −ℝ ( 𝐴 · 𝑥 ) ) = ( 0 −ℝ ( 𝐴 · ( 𝑦 + 1 ) ) ) ) |
14 |
11 13
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 0 −ℝ 𝐴 ) · 𝑥 ) = ( 0 −ℝ ( 𝐴 · 𝑥 ) ) ↔ ( ( 0 −ℝ 𝐴 ) · ( 𝑦 + 1 ) ) = ( 0 −ℝ ( 𝐴 · ( 𝑦 + 1 ) ) ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( ( 0 −ℝ 𝐴 ) · 𝑥 ) = ( ( 0 −ℝ 𝐴 ) · 𝑁 ) ) |
16 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑁 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 0 −ℝ ( 𝐴 · 𝑥 ) ) = ( 0 −ℝ ( 𝐴 · 𝑁 ) ) ) |
18 |
15 17
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ( 0 −ℝ 𝐴 ) · 𝑥 ) = ( 0 −ℝ ( 𝐴 · 𝑥 ) ) ↔ ( ( 0 −ℝ 𝐴 ) · 𝑁 ) = ( 0 −ℝ ( 𝐴 · 𝑁 ) ) ) ) |
19 |
|
rernegcl |
⊢ ( 𝐴 ∈ ℝ → ( 0 −ℝ 𝐴 ) ∈ ℝ ) |
20 |
1 19
|
syl |
⊢ ( 𝜑 → ( 0 −ℝ 𝐴 ) ∈ ℝ ) |
21 |
|
ax-1rid |
⊢ ( ( 0 −ℝ 𝐴 ) ∈ ℝ → ( ( 0 −ℝ 𝐴 ) · 1 ) = ( 0 −ℝ 𝐴 ) ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → ( ( 0 −ℝ 𝐴 ) · 1 ) = ( 0 −ℝ 𝐴 ) ) |
23 |
|
ax-1rid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) |
24 |
1 23
|
syl |
⊢ ( 𝜑 → ( 𝐴 · 1 ) = 𝐴 ) |
25 |
24
|
oveq2d |
⊢ ( 𝜑 → ( 0 −ℝ ( 𝐴 · 1 ) ) = ( 0 −ℝ 𝐴 ) ) |
26 |
22 25
|
eqtr4d |
⊢ ( 𝜑 → ( ( 0 −ℝ 𝐴 ) · 1 ) = ( 0 −ℝ ( 𝐴 · 1 ) ) ) |
27 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) |
28 |
27
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( ( 0 −ℝ 𝐴 ) + ( ( 0 −ℝ 𝐴 ) · 𝑦 ) ) = ( ( 0 −ℝ 𝐴 ) + ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) ) |
29 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → 0 ∈ ℝ ) |
30 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → 𝐴 ∈ ℝ ) |
31 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
32 |
31
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → 𝑦 ∈ ℝ ) |
33 |
30 32
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( 𝐴 · 𝑦 ) ∈ ℝ ) |
34 |
|
rernegcl |
⊢ ( ( 𝐴 · 𝑦 ) ∈ ℝ → ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ∈ ℝ ) |
35 |
33 34
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ∈ ℝ ) |
36 |
|
readdsub |
⊢ ( ( 0 ∈ ℝ ∧ ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 + ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) −ℝ 𝐴 ) = ( ( 0 −ℝ 𝐴 ) + ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) ) |
37 |
29 35 30 36
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( ( 0 + ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) −ℝ 𝐴 ) = ( ( 0 −ℝ 𝐴 ) + ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) ) |
38 |
|
readdlid |
⊢ ( ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ∈ ℝ → ( 0 + ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) |
39 |
35 38
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( 0 + ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) |
40 |
39
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( ( 0 + ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) −ℝ 𝐴 ) = ( ( 0 −ℝ ( 𝐴 · 𝑦 ) ) −ℝ 𝐴 ) ) |
41 |
37 40
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( ( 0 −ℝ 𝐴 ) + ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) = ( ( 0 −ℝ ( 𝐴 · 𝑦 ) ) −ℝ 𝐴 ) ) |
42 |
|
resubsub4 |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐴 · 𝑦 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 −ℝ ( 𝐴 · 𝑦 ) ) −ℝ 𝐴 ) = ( 0 −ℝ ( ( 𝐴 · 𝑦 ) + 𝐴 ) ) ) |
43 |
29 33 30 42
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( ( 0 −ℝ ( 𝐴 · 𝑦 ) ) −ℝ 𝐴 ) = ( 0 −ℝ ( ( 𝐴 · 𝑦 ) + 𝐴 ) ) ) |
44 |
28 41 43
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( ( 0 −ℝ 𝐴 ) + ( ( 0 −ℝ 𝐴 ) · 𝑦 ) ) = ( 0 −ℝ ( ( 𝐴 · 𝑦 ) + 𝐴 ) ) ) |
45 |
22
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 0 −ℝ 𝐴 ) · 1 ) + ( ( 0 −ℝ 𝐴 ) · 𝑦 ) ) = ( ( 0 −ℝ 𝐴 ) + ( ( 0 −ℝ 𝐴 ) · 𝑦 ) ) ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( ( ( 0 −ℝ 𝐴 ) · 1 ) + ( ( 0 −ℝ 𝐴 ) · 𝑦 ) ) = ( ( 0 −ℝ 𝐴 ) + ( ( 0 −ℝ 𝐴 ) · 𝑦 ) ) ) |
47 |
24
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑦 ) + ( 𝐴 · 1 ) ) = ( ( 𝐴 · 𝑦 ) + 𝐴 ) ) |
48 |
47
|
oveq2d |
⊢ ( 𝜑 → ( 0 −ℝ ( ( 𝐴 · 𝑦 ) + ( 𝐴 · 1 ) ) ) = ( 0 −ℝ ( ( 𝐴 · 𝑦 ) + 𝐴 ) ) ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( 0 −ℝ ( ( 𝐴 · 𝑦 ) + ( 𝐴 · 1 ) ) ) = ( 0 −ℝ ( ( 𝐴 · 𝑦 ) + 𝐴 ) ) ) |
50 |
44 46 49
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( ( ( 0 −ℝ 𝐴 ) · 1 ) + ( ( 0 −ℝ 𝐴 ) · 𝑦 ) ) = ( 0 −ℝ ( ( 𝐴 · 𝑦 ) + ( 𝐴 · 1 ) ) ) ) |
51 |
|
nnadd1com |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) = ( 1 + 𝑦 ) ) |
52 |
51
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 0 −ℝ 𝐴 ) · ( 𝑦 + 1 ) ) = ( ( 0 −ℝ 𝐴 ) · ( 1 + 𝑦 ) ) ) |
53 |
52
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( ( 0 −ℝ 𝐴 ) · ( 𝑦 + 1 ) ) = ( ( 0 −ℝ 𝐴 ) · ( 1 + 𝑦 ) ) ) |
54 |
20
|
recnd |
⊢ ( 𝜑 → ( 0 −ℝ 𝐴 ) ∈ ℂ ) |
55 |
54
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( 0 −ℝ 𝐴 ) ∈ ℂ ) |
56 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → 1 ∈ ℂ ) |
57 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
58 |
57
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → 𝑦 ∈ ℂ ) |
59 |
55 56 58
|
adddid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( ( 0 −ℝ 𝐴 ) · ( 1 + 𝑦 ) ) = ( ( ( 0 −ℝ 𝐴 ) · 1 ) + ( ( 0 −ℝ 𝐴 ) · 𝑦 ) ) ) |
60 |
53 59
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( ( 0 −ℝ 𝐴 ) · ( 𝑦 + 1 ) ) = ( ( ( 0 −ℝ 𝐴 ) · 1 ) + ( ( 0 −ℝ 𝐴 ) · 𝑦 ) ) ) |
61 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
62 |
61
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → 𝐴 ∈ ℂ ) |
63 |
62 58 56
|
adddid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( 𝐴 · ( 𝑦 + 1 ) ) = ( ( 𝐴 · 𝑦 ) + ( 𝐴 · 1 ) ) ) |
64 |
63
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( 0 −ℝ ( 𝐴 · ( 𝑦 + 1 ) ) ) = ( 0 −ℝ ( ( 𝐴 · 𝑦 ) + ( 𝐴 · 1 ) ) ) ) |
65 |
50 60 64
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ) ∧ ( ( 0 −ℝ 𝐴 ) · 𝑦 ) = ( 0 −ℝ ( 𝐴 · 𝑦 ) ) ) → ( ( 0 −ℝ 𝐴 ) · ( 𝑦 + 1 ) ) = ( 0 −ℝ ( 𝐴 · ( 𝑦 + 1 ) ) ) ) |
66 |
6 10 14 18 26 65
|
nnindd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( ( 0 −ℝ 𝐴 ) · 𝑁 ) = ( 0 −ℝ ( 𝐴 · 𝑁 ) ) ) |
67 |
2 66
|
mpdan |
⊢ ( 𝜑 → ( ( 0 −ℝ 𝐴 ) · 𝑁 ) = ( 0 −ℝ ( 𝐴 · 𝑁 ) ) ) |