Metamath Proof Explorer


Theorem renemnf

Description: No real equals minus infinity. (Contributed by NM, 14-Oct-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion renemnf ( 𝐴 ∈ ℝ → 𝐴 ≠ -∞ )

Proof

Step Hyp Ref Expression
1 mnfnre -∞ ∉ ℝ
2 1 neli ¬ -∞ ∈ ℝ
3 eleq1 ( 𝐴 = -∞ → ( 𝐴 ∈ ℝ ↔ -∞ ∈ ℝ ) )
4 2 3 mtbiri ( 𝐴 = -∞ → ¬ 𝐴 ∈ ℝ )
5 4 necon2ai ( 𝐴 ∈ ℝ → 𝐴 ≠ -∞ )