Metamath Proof Explorer


Theorem renemnfd

Description: No real equals minus infinity. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rexrd.1 ( 𝜑𝐴 ∈ ℝ )
Assertion renemnfd ( 𝜑𝐴 ≠ -∞ )

Proof

Step Hyp Ref Expression
1 rexrd.1 ( 𝜑𝐴 ∈ ℝ )
2 renemnf ( 𝐴 ∈ ℝ → 𝐴 ≠ -∞ )
3 1 2 syl ( 𝜑𝐴 ≠ -∞ )