Metamath Proof Explorer


Theorem renfdisj

Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion renfdisj ( ℝ ∩ { +∞ , -∞ } ) = ∅

Proof

Step Hyp Ref Expression
1 disj ( ( ℝ ∩ { +∞ , -∞ } ) = ∅ ↔ ∀ 𝑥 ∈ ℝ ¬ 𝑥 ∈ { +∞ , -∞ } )
2 renepnf ( 𝑥 ∈ ℝ → 𝑥 ≠ +∞ )
3 renemnf ( 𝑥 ∈ ℝ → 𝑥 ≠ -∞ )
4 2 3 nelprd ( 𝑥 ∈ ℝ → ¬ 𝑥 ∈ { +∞ , -∞ } )
5 1 4 mprgbir ( ℝ ∩ { +∞ , -∞ } ) = ∅