| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
⊢ i ∈ ℂ |
| 2 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 3 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 4 |
1 2 3
|
sylancr |
⊢ ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∈ ℂ ) |
| 5 |
|
rpre |
⊢ ( ( i · 𝐴 ) ∈ ℝ+ → ( i · 𝐴 ) ∈ ℝ ) |
| 6 |
|
rereb |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( ( i · 𝐴 ) ∈ ℝ ↔ ( ℜ ‘ ( i · 𝐴 ) ) = ( i · 𝐴 ) ) ) |
| 7 |
5 6
|
imbitrid |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( ( i · 𝐴 ) ∈ ℝ+ → ( ℜ ‘ ( i · 𝐴 ) ) = ( i · 𝐴 ) ) ) |
| 8 |
4 7
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( i · 𝐴 ) ∈ ℝ+ → ( ℜ ‘ ( i · 𝐴 ) ) = ( i · 𝐴 ) ) ) |
| 9 |
4
|
addlidd |
⊢ ( 𝐴 ∈ ℝ → ( 0 + ( i · 𝐴 ) ) = ( i · 𝐴 ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝐴 ∈ ℝ → ( ℜ ‘ ( 0 + ( i · 𝐴 ) ) ) = ( ℜ ‘ ( i · 𝐴 ) ) ) |
| 11 |
|
0re |
⊢ 0 ∈ ℝ |
| 12 |
|
crre |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ℜ ‘ ( 0 + ( i · 𝐴 ) ) ) = 0 ) |
| 13 |
11 12
|
mpan |
⊢ ( 𝐴 ∈ ℝ → ( ℜ ‘ ( 0 + ( i · 𝐴 ) ) ) = 0 ) |
| 14 |
10 13
|
eqtr3d |
⊢ ( 𝐴 ∈ ℝ → ( ℜ ‘ ( i · 𝐴 ) ) = 0 ) |
| 15 |
14
|
eqeq1d |
⊢ ( 𝐴 ∈ ℝ → ( ( ℜ ‘ ( i · 𝐴 ) ) = ( i · 𝐴 ) ↔ 0 = ( i · 𝐴 ) ) ) |
| 16 |
8 15
|
sylibd |
⊢ ( 𝐴 ∈ ℝ → ( ( i · 𝐴 ) ∈ ℝ+ → 0 = ( i · 𝐴 ) ) ) |
| 17 |
|
rpne0 |
⊢ ( ( i · 𝐴 ) ∈ ℝ+ → ( i · 𝐴 ) ≠ 0 ) |
| 18 |
17
|
necon2bi |
⊢ ( ( i · 𝐴 ) = 0 → ¬ ( i · 𝐴 ) ∈ ℝ+ ) |
| 19 |
18
|
eqcoms |
⊢ ( 0 = ( i · 𝐴 ) → ¬ ( i · 𝐴 ) ∈ ℝ+ ) |
| 20 |
16 19
|
syl6 |
⊢ ( 𝐴 ∈ ℝ → ( ( i · 𝐴 ) ∈ ℝ+ → ¬ ( i · 𝐴 ) ∈ ℝ+ ) ) |
| 21 |
20
|
pm2.01d |
⊢ ( 𝐴 ∈ ℝ → ¬ ( i · 𝐴 ) ∈ ℝ+ ) |
| 22 |
|
df-nel |
⊢ ( ( i · 𝐴 ) ∉ ℝ+ ↔ ¬ ( i · 𝐴 ) ∈ ℝ+ ) |
| 23 |
21 22
|
sylibr |
⊢ ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∉ ℝ+ ) |