Step |
Hyp |
Ref |
Expression |
1 |
|
orc |
⊢ ( 𝐶 < 𝐴 → ( 𝐶 < 𝐴 ∨ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
2 |
1
|
a1d |
⊢ ( 𝐶 < 𝐴 → ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) → ( 𝐶 < 𝐴 ∨ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
3 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
4 |
3
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) ∧ ¬ 𝐶 < 𝐴 ) → 𝐶 ∈ ℝ ) |
5 |
|
lenlt |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≤ 𝐶 ↔ ¬ 𝐶 < 𝐴 ) ) |
6 |
5
|
biimprd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ¬ 𝐶 < 𝐴 → 𝐴 ≤ 𝐶 ) ) |
7 |
6
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ¬ 𝐶 < 𝐴 → 𝐴 ≤ 𝐶 ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) → ( ¬ 𝐶 < 𝐴 → 𝐴 ≤ 𝐶 ) ) |
9 |
8
|
imp |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) ∧ ¬ 𝐶 < 𝐴 ) → 𝐴 ≤ 𝐶 ) |
10 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) ∧ ¬ 𝐶 < 𝐴 ) → 𝐶 ≤ 𝐵 ) |
11 |
|
3simpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) ∧ ¬ 𝐶 < 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
13 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
14 |
12 13
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) ∧ ¬ 𝐶 < 𝐴 ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
15 |
4 9 10 14
|
mpbir3and |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) ∧ ¬ 𝐶 < 𝐴 ) → 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
16 |
15
|
olcd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) ∧ ¬ 𝐶 < 𝐴 ) → ( 𝐶 < 𝐴 ∨ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
17 |
16
|
expcom |
⊢ ( ¬ 𝐶 < 𝐴 → ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) → ( 𝐶 < 𝐴 ∨ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ) ) |
18 |
2 17
|
pm2.61i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) → ( 𝐶 < 𝐴 ∨ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
19 |
18
|
orcd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≤ 𝐵 ) → ( ( 𝐶 < 𝐴 ∨ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∨ 𝐵 < 𝐶 ) ) |
20 |
19
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ≤ 𝐵 → ( ( 𝐶 < 𝐴 ∨ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∨ 𝐵 < 𝐶 ) ) ) |
21 |
|
olc |
⊢ ( 𝐵 < 𝐶 → ( ( 𝐶 < 𝐴 ∨ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∨ 𝐵 < 𝐶 ) ) |
22 |
21
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐶 → ( ( 𝐶 < 𝐴 ∨ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∨ 𝐵 < 𝐶 ) ) ) |
23 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
24 |
|
lelttric |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ≤ 𝐵 ∨ 𝐵 < 𝐶 ) ) |
25 |
3 23 24
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ≤ 𝐵 ∨ 𝐵 < 𝐶 ) ) |
26 |
20 22 25
|
mpjaod |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 < 𝐴 ∨ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∨ 𝐵 < 𝐶 ) ) |
27 |
|
df-3or |
⊢ ( ( 𝐶 < 𝐴 ∨ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∨ 𝐵 < 𝐶 ) ↔ ( ( 𝐶 < 𝐴 ∨ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ∨ 𝐵 < 𝐶 ) ) |
28 |
26 27
|
sylibr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 < 𝐴 ∨ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∨ 𝐵 < 𝐶 ) ) |