Metamath Proof Explorer


Theorem reperf

Description: The real numbers are a perfect subset of the complex numbers. (Contributed by Mario Carneiro, 26-Dec-2016)

Ref Expression
Hypothesis recld2.1 𝐽 = ( TopOpen ‘ ℂfld )
Assertion reperf ( 𝐽t ℝ ) ∈ Perf

Proof

Step Hyp Ref Expression
1 recld2.1 𝐽 = ( TopOpen ‘ ℂfld )
2 readdcl ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ )
3 ax-resscn ℝ ⊆ ℂ
4 1 2 3 reperflem ( 𝐽t ℝ ) ∈ Perf