Step |
Hyp |
Ref |
Expression |
1 |
|
cnre |
⊢ ( 𝐴 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) |
2 |
|
crre |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ℜ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) = 𝑥 ) |
3 |
|
crim |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) = 𝑦 ) |
4 |
3
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( i · ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) = ( i · 𝑦 ) ) |
5 |
2 4
|
oveq12d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ℜ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) + ( i · ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) ) = ( 𝑥 + ( i · 𝑦 ) ) ) |
6 |
5
|
eqcomd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + ( i · 𝑦 ) ) = ( ( ℜ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) + ( i · ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) ) ) |
7 |
|
id |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( ℜ ‘ 𝐴 ) = ( ℜ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( ℑ ‘ 𝐴 ) = ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( i · ( ℑ ‘ 𝐴 ) ) = ( i · ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) ) |
11 |
8 10
|
oveq12d |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) + ( i · ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) ) ) |
12 |
7 11
|
eqeq12d |
⊢ ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → ( 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ↔ ( 𝑥 + ( i · 𝑦 ) ) = ( ( ℜ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) + ( i · ( ℑ ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ) ) ) ) |
13 |
6 12
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
14 |
13
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐴 = ( 𝑥 + ( i · 𝑦 ) ) → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
15 |
1 14
|
syl |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |