Metamath Proof Explorer


Theorem repos

Description: Two ways of saying that a real number is positive. (Contributed by NM, 7-May-2007)

Ref Expression
Assertion repos ( 𝐴 ∈ ( 0 (,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑥 = 𝐴 → ( 0 < 𝑥 ↔ 0 < 𝐴 ) )
2 ioopos ( 0 (,) +∞ ) = { 𝑥 ∈ ℝ ∣ 0 < 𝑥 }
3 1 2 elrab2 ( 𝐴 ∈ ( 0 (,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )