Step |
Hyp |
Ref |
Expression |
1 |
|
reprval.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) |
2 |
|
reprval.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
reprval.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
4 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
5 |
4
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
6 |
1 2 5
|
reprval |
⊢ ( 𝜑 → ( 𝐴 ( repr ‘ 0 ) 𝑀 ) = { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
7 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
8 |
7
|
sumeq1i |
⊢ Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = Σ 𝑎 ∈ ∅ ( 𝑐 ‘ 𝑎 ) |
9 |
|
sum0 |
⊢ Σ 𝑎 ∈ ∅ ( 𝑐 ‘ 𝑎 ) = 0 |
10 |
8 9
|
eqtri |
⊢ Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = 0 |
11 |
10
|
eqeq1i |
⊢ ( Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ↔ 0 = 𝑀 ) |
12 |
11
|
a1i |
⊢ ( 𝑐 = ∅ → ( Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ↔ 0 = 𝑀 ) ) |
13 |
|
0ex |
⊢ ∅ ∈ V |
14 |
13
|
snid |
⊢ ∅ ∈ { ∅ } |
15 |
|
nnex |
⊢ ℕ ∈ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
17 |
16 1
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
18 |
|
mapdm0 |
⊢ ( 𝐴 ∈ V → ( 𝐴 ↑m ∅ ) = { ∅ } ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → ( 𝐴 ↑m ∅ ) = { ∅ } ) |
20 |
14 19
|
eleqtrrid |
⊢ ( 𝜑 → ∅ ∈ ( 𝐴 ↑m ∅ ) ) |
21 |
7
|
oveq2i |
⊢ ( 𝐴 ↑m ( 0 ..^ 0 ) ) = ( 𝐴 ↑m ∅ ) |
22 |
20 21
|
eleqtrrdi |
⊢ ( 𝜑 → ∅ ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 0 ) → ∅ ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 = 0 ) → 𝑀 = 0 ) |
25 |
24
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑀 = 0 ) → 0 = 𝑀 ) |
26 |
21 19
|
syl5eq |
⊢ ( 𝜑 → ( 𝐴 ↑m ( 0 ..^ 0 ) ) = { ∅ } ) |
27 |
26
|
eleq2d |
⊢ ( 𝜑 → ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ↔ 𝑐 ∈ { ∅ } ) ) |
28 |
27
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ) → 𝑐 ∈ { ∅ } ) |
29 |
|
elsni |
⊢ ( 𝑐 ∈ { ∅ } → 𝑐 = ∅ ) |
30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ) → 𝑐 = ∅ ) |
31 |
30
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑀 = 0 ) ∧ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ) → 𝑐 = ∅ ) |
32 |
12 23 25 31
|
rabeqsnd |
⊢ ( ( 𝜑 ∧ 𝑀 = 0 ) → { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } = { ∅ } ) |
33 |
32
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑀 = 0 ) → { ∅ } = { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
34 |
10
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑀 = 0 ) ∧ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ) → Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = 0 ) |
35 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑀 = 0 ) ∧ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ) → ¬ 𝑀 = 0 ) |
36 |
35
|
neqned |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑀 = 0 ) ∧ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ) → 𝑀 ≠ 0 ) |
37 |
36
|
necomd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑀 = 0 ) ∧ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ) → 0 ≠ 𝑀 ) |
38 |
34 37
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑀 = 0 ) ∧ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ) → Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) ≠ 𝑀 ) |
39 |
38
|
neneqd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑀 = 0 ) ∧ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ) → ¬ Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ) |
40 |
39
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 0 ) → ∀ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ¬ Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ) |
41 |
|
rabeq0 |
⊢ ( { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } = ∅ ↔ ∀ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ¬ Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ) |
42 |
40 41
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 0 ) → { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } = ∅ ) |
43 |
42
|
eqcomd |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 = 0 ) → ∅ = { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
44 |
33 43
|
ifeqda |
⊢ ( 𝜑 → if ( 𝑀 = 0 , { ∅ } , ∅ ) = { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 0 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 0 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
45 |
6 44
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 ( repr ‘ 0 ) 𝑀 ) = if ( 𝑀 = 0 , { ∅ } , ∅ ) ) |