Step |
Hyp |
Ref |
Expression |
1 |
|
reprdifc.c |
⊢ 𝐶 = { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑥 ) ∈ 𝐵 } |
2 |
|
reprdifc.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) |
3 |
|
reprdifc.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℕ ) |
4 |
|
reprdifc.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
5 |
|
reprdifc.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
6 |
|
nfv |
⊢ Ⅎ 𝑑 𝜑 |
7 |
|
nfrab1 |
⊢ Ⅎ 𝑑 { 𝑑 ∈ ( ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∖ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 } |
8 |
|
nfcv |
⊢ Ⅎ 𝑑 ∪ 𝑥 ∈ ( 0 ..^ 𝑆 ) { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑥 ) ∈ 𝐵 } |
9 |
4
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
10 |
2 9 5
|
reprval |
⊢ ( 𝜑 → ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) = { 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 } ) |
11 |
10
|
eleq2d |
⊢ ( 𝜑 → ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ↔ 𝑑 ∈ { 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 } ) ) |
12 |
|
rabid |
⊢ ( 𝑑 ∈ { 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 } ↔ ( 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ) |
13 |
11 12
|
bitrdi |
⊢ ( 𝜑 → ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ↔ ( 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ) ) |
14 |
13
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ↔ ( ( 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ∧ ¬ 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ) ) |
15 |
|
eldif |
⊢ ( 𝑑 ∈ ( ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∖ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ↔ ( 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ ¬ 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ) |
16 |
15
|
anbi1i |
⊢ ( ( 𝑑 ∈ ( ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∖ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ↔ ( ( 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ ¬ 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ) |
17 |
|
an32 |
⊢ ( ( ( 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ ¬ 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ↔ ( ( 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ∧ ¬ 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ) |
18 |
16 17
|
bitri |
⊢ ( ( 𝑑 ∈ ( ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∖ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ↔ ( ( 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ∧ ¬ 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ) |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( ( 𝑑 ∈ ( ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∖ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ↔ ( ( 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ∧ ¬ 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ) ) |
20 |
14 19
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ↔ ( 𝑑 ∈ ( ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∖ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ) ) |
21 |
|
nnex |
⊢ ℕ ∈ V |
22 |
21
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
23 |
22 3
|
ssexd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
24 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ 𝑆 ) ∈ V ) |
25 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ ( 0 ..^ 𝑆 ) ∈ V ) → ( 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ↔ 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ) ) |
26 |
23 24 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ↔ 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ↔ 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ) ) |
28 |
|
ffnfv |
⊢ ( 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ↔ ( 𝑑 Fn ( 0 ..^ 𝑆 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) ) |
29 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝐴 ⊆ ℕ ) |
30 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑀 ∈ ℤ ) |
31 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑆 ∈ ℕ0 ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) |
33 |
29 30 31 32
|
reprf |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) |
34 |
33
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑑 Fn ( 0 ..^ 𝑆 ) ) |
35 |
34
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑑 Fn ( 0 ..^ 𝑆 ) ∧ ∀ 𝑥 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
36 |
28 35
|
bitr4id |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ↔ ∀ 𝑥 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) ) |
37 |
27 36
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ↔ ∀ 𝑥 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) ) |
38 |
37
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( ¬ 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ↔ ¬ ∀ 𝑥 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) ) |
39 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑆 ) ¬ ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ↔ ¬ ∀ 𝑥 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) |
40 |
38 39
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( ¬ 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑆 ) ¬ ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) ) |
41 |
40
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ↔ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑆 ) ¬ ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
42 |
20 41
|
bitr3d |
⊢ ( 𝜑 → ( ( 𝑑 ∈ ( ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∖ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ↔ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑆 ) ¬ ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) ) ) |
43 |
|
fveq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 ‘ 𝑥 ) = ( 𝑑 ‘ 𝑥 ) ) |
44 |
43
|
eleq1d |
⊢ ( 𝑐 = 𝑑 → ( ( 𝑐 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) ) |
45 |
44
|
notbid |
⊢ ( 𝑐 = 𝑑 → ( ¬ ( 𝑐 ‘ 𝑥 ) ∈ 𝐵 ↔ ¬ ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) ) |
46 |
45
|
elrab |
⊢ ( 𝑑 ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑥 ) ∈ 𝐵 } ↔ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) ) |
47 |
46
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑆 ) 𝑑 ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑥 ) ∈ 𝐵 } ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) ) |
48 |
|
r19.42v |
⊢ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑆 ) ¬ ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) ) |
49 |
47 48
|
bitri |
⊢ ( ∃ 𝑥 ∈ ( 0 ..^ 𝑆 ) 𝑑 ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑥 ) ∈ 𝐵 } ↔ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ∃ 𝑥 ∈ ( 0 ..^ 𝑆 ) ¬ ( 𝑑 ‘ 𝑥 ) ∈ 𝐵 ) ) |
50 |
42 49
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝑑 ∈ ( ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∖ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑆 ) 𝑑 ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑥 ) ∈ 𝐵 } ) ) |
51 |
|
rabid |
⊢ ( 𝑑 ∈ { 𝑑 ∈ ( ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∖ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 } ↔ ( 𝑑 ∈ ( ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∖ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ) |
52 |
|
eliun |
⊢ ( 𝑑 ∈ ∪ 𝑥 ∈ ( 0 ..^ 𝑆 ) { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑥 ) ∈ 𝐵 } ↔ ∃ 𝑥 ∈ ( 0 ..^ 𝑆 ) 𝑑 ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑥 ) ∈ 𝐵 } ) |
53 |
50 51 52
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑑 ∈ { 𝑑 ∈ ( ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∖ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 } ↔ 𝑑 ∈ ∪ 𝑥 ∈ ( 0 ..^ 𝑆 ) { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑥 ) ∈ 𝐵 } ) ) |
54 |
6 7 8 53
|
eqrd |
⊢ ( 𝜑 → { 𝑑 ∈ ( ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∖ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 } = ∪ 𝑥 ∈ ( 0 ..^ 𝑆 ) { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑥 ) ∈ 𝐵 } ) |
55 |
3 9 5
|
reprval |
⊢ ( 𝜑 → ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) = { 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 } ) |
56 |
10 55
|
difeq12d |
⊢ ( 𝜑 → ( ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∖ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) = ( { 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 } ∖ { 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 } ) ) |
57 |
|
difrab2 |
⊢ ( { 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 } ∖ { 𝑑 ∈ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 } ) = { 𝑑 ∈ ( ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∖ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 } |
58 |
56 57
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∖ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) = { 𝑑 ∈ ( ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∖ ( 𝐵 ↑m ( 0 ..^ 𝑆 ) ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 } ) |
59 |
1
|
a1i |
⊢ ( 𝜑 → 𝐶 = { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑥 ) ∈ 𝐵 } ) |
60 |
59
|
iuneq2d |
⊢ ( 𝜑 → ∪ 𝑥 ∈ ( 0 ..^ 𝑆 ) 𝐶 = ∪ 𝑥 ∈ ( 0 ..^ 𝑆 ) { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑥 ) ∈ 𝐵 } ) |
61 |
54 58 60
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∖ ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 ) ) = ∪ 𝑥 ∈ ( 0 ..^ 𝑆 ) 𝐶 ) |