| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							reprval.a | 
							⊢ ( 𝜑  →  𝐴  ⊆  ℕ )  | 
						
						
							| 2 | 
							
								
							 | 
							reprval.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 3 | 
							
								
							 | 
							reprval.s | 
							⊢ ( 𝜑  →  𝑆  ∈  ℕ0 )  | 
						
						
							| 4 | 
							
								
							 | 
							reprfi.1 | 
							⊢ ( 𝜑  →  𝐴  ∈  Fin )  | 
						
						
							| 5 | 
							
								1 2 3
							 | 
							reprval | 
							⊢ ( 𝜑  →  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  =  { 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 } )  | 
						
						
							| 6 | 
							
								
							 | 
							fzofi | 
							⊢ ( 0 ..^ 𝑆 )  ∈  Fin  | 
						
						
							| 7 | 
							
								
							 | 
							mapfi | 
							⊢ ( ( 𝐴  ∈  Fin  ∧  ( 0 ..^ 𝑆 )  ∈  Fin )  →  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∈  Fin )  | 
						
						
							| 8 | 
							
								4 6 7
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∈  Fin )  | 
						
						
							| 9 | 
							
								
							 | 
							rabfi | 
							⊢ ( ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∈  Fin  →  { 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 }  ∈  Fin )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							⊢ ( 𝜑  →  { 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 }  ∈  Fin )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							eqeltrd | 
							⊢ ( 𝜑  →  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∈  Fin )  |