Step |
Hyp |
Ref |
Expression |
1 |
|
reprinfz1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
reprinfz1.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
3 |
|
reprinfz1.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) |
4 |
1 2 3
|
reprinfz1 |
⊢ ( 𝜑 → ( 𝐴 ( repr ‘ 𝑆 ) 𝑁 ) = ( ( 𝐴 ∩ ( 1 ... 𝑁 ) ) ( repr ‘ 𝑆 ) 𝑁 ) ) |
5 |
|
inss2 |
⊢ ( 𝐴 ∩ ( 1 ... 𝑁 ) ) ⊆ ( 1 ... 𝑁 ) |
6 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
7 |
5 6
|
sstri |
⊢ ( 𝐴 ∩ ( 1 ... 𝑁 ) ) ⊆ ℕ |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 1 ... 𝑁 ) ) ⊆ ℕ ) |
9 |
1
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
10 |
|
fzfi |
⊢ ( 1 ... 𝑁 ) ∈ Fin |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
12 |
5
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 1 ... 𝑁 ) ) ⊆ ( 1 ... 𝑁 ) ) |
13 |
11 12
|
ssfid |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 1 ... 𝑁 ) ) ∈ Fin ) |
14 |
8 9 2 13
|
reprfi |
⊢ ( 𝜑 → ( ( 𝐴 ∩ ( 1 ... 𝑁 ) ) ( repr ‘ 𝑆 ) 𝑁 ) ∈ Fin ) |
15 |
4 14
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 ( repr ‘ 𝑆 ) 𝑁 ) ∈ Fin ) |