Step |
Hyp |
Ref |
Expression |
1 |
|
reprfz1.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
2 |
|
reprfz1.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
3 |
|
ssidd |
⊢ ( 𝜑 → ℕ ⊆ ℕ ) |
4 |
1 2 3
|
reprinfz1 |
⊢ ( 𝜑 → ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) = ( ( ℕ ∩ ( 1 ... 𝑁 ) ) ( repr ‘ 𝑆 ) 𝑁 ) ) |
5 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
6 |
|
dfss |
⊢ ( ( 1 ... 𝑁 ) ⊆ ℕ ↔ ( 1 ... 𝑁 ) = ( ( 1 ... 𝑁 ) ∩ ℕ ) ) |
7 |
5 6
|
mpbi |
⊢ ( 1 ... 𝑁 ) = ( ( 1 ... 𝑁 ) ∩ ℕ ) |
8 |
|
incom |
⊢ ( ( 1 ... 𝑁 ) ∩ ℕ ) = ( ℕ ∩ ( 1 ... 𝑁 ) ) |
9 |
7 8
|
eqtri |
⊢ ( 1 ... 𝑁 ) = ( ℕ ∩ ( 1 ... 𝑁 ) ) |
10 |
9
|
oveq1i |
⊢ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) = ( ( ℕ ∩ ( 1 ... 𝑁 ) ) ( repr ‘ 𝑆 ) 𝑁 ) |
11 |
4 10
|
eqtr4di |
⊢ ( 𝜑 → ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) = ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) |