| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reprval.a | ⊢ ( 𝜑  →  𝐴  ⊆  ℕ ) | 
						
							| 2 |  | reprval.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | reprval.s | ⊢ ( 𝜑  →  𝑆  ∈  ℕ0 ) | 
						
							| 4 |  | fin | ⊢ ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 𝐴  ∩  𝐵 )  ↔  ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴  ∧  𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ) ) | 
						
							| 5 |  | df-f | ⊢ ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐵  ↔  ( 𝑐  Fn  ( 0 ..^ 𝑆 )  ∧  ran  𝑐  ⊆  𝐵 ) ) | 
						
							| 6 |  | ffn | ⊢ ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴  →  𝑐  Fn  ( 0 ..^ 𝑆 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝜑  ∧  𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 )  →  𝑐  Fn  ( 0 ..^ 𝑆 ) ) | 
						
							| 8 | 7 | biantrurd | ⊢ ( ( 𝜑  ∧  𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 )  →  ( ran  𝑐  ⊆  𝐵  ↔  ( 𝑐  Fn  ( 0 ..^ 𝑆 )  ∧  ran  𝑐  ⊆  𝐵 ) ) ) | 
						
							| 9 | 8 | bicomd | ⊢ ( ( 𝜑  ∧  𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 )  →  ( ( 𝑐  Fn  ( 0 ..^ 𝑆 )  ∧  ran  𝑐  ⊆  𝐵 )  ↔  ran  𝑐  ⊆  𝐵 ) ) | 
						
							| 10 | 5 9 | bitrid | ⊢ ( ( 𝜑  ∧  𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 )  →  ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐵  ↔  ran  𝑐  ⊆  𝐵 ) ) | 
						
							| 11 | 10 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴  ∧  𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 )  ↔  ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴  ∧  ran  𝑐  ⊆  𝐵 ) ) ) | 
						
							| 12 | 4 11 | bitrid | ⊢ ( 𝜑  →  ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 𝐴  ∩  𝐵 )  ↔  ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴  ∧  ran  𝑐  ⊆  𝐵 ) ) ) | 
						
							| 13 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  ℕ  ∈  V ) | 
						
							| 15 | 14 1 | ssexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 16 |  | inex1g | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∩  𝐵 )  ∈  V ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  ∈  V ) | 
						
							| 18 |  | ovex | ⊢ ( 0 ..^ 𝑆 )  ∈  V | 
						
							| 19 |  | elmapg | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ∈  V  ∧  ( 0 ..^ 𝑆 )  ∈  V )  →  ( 𝑐  ∈  ( ( 𝐴  ∩  𝐵 )  ↑m  ( 0 ..^ 𝑆 ) )  ↔  𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 20 | 17 18 19 | sylancl | ⊢ ( 𝜑  →  ( 𝑐  ∈  ( ( 𝐴  ∩  𝐵 )  ↑m  ( 0 ..^ 𝑆 ) )  ↔  𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 21 |  | elmapg | ⊢ ( ( 𝐴  ∈  V  ∧  ( 0 ..^ 𝑆 )  ∈  V )  →  ( 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ↔  𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) ) | 
						
							| 22 | 15 18 21 | sylancl | ⊢ ( 𝜑  →  ( 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ↔  𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) ) | 
						
							| 23 | 22 | anbi1d | ⊢ ( 𝜑  →  ( ( 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  ran  𝑐  ⊆  𝐵 )  ↔  ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴  ∧  ran  𝑐  ⊆  𝐵 ) ) ) | 
						
							| 24 | 12 20 23 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝑐  ∈  ( ( 𝐴  ∩  𝐵 )  ↑m  ( 0 ..^ 𝑆 ) )  ↔  ( 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  ran  𝑐  ⊆  𝐵 ) ) ) | 
						
							| 25 | 24 | anbi1d | ⊢ ( 𝜑  →  ( ( 𝑐  ∈  ( ( 𝐴  ∩  𝐵 )  ↑m  ( 0 ..^ 𝑆 ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 )  ↔  ( ( 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  ran  𝑐  ⊆  𝐵 )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 ) ) ) | 
						
							| 26 |  | inss1 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐴 | 
						
							| 27 | 26 1 | sstrid | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  ⊆  ℕ ) | 
						
							| 28 | 27 2 3 | reprval | ⊢ ( 𝜑  →  ( ( 𝐴  ∩  𝐵 ) ( repr ‘ 𝑆 ) 𝑀 )  =  { 𝑐  ∈  ( ( 𝐴  ∩  𝐵 )  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 } ) | 
						
							| 29 | 28 | eleq2d | ⊢ ( 𝜑  →  ( 𝑐  ∈  ( ( 𝐴  ∩  𝐵 ) ( repr ‘ 𝑆 ) 𝑀 )  ↔  𝑐  ∈  { 𝑐  ∈  ( ( 𝐴  ∩  𝐵 )  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 } ) ) | 
						
							| 30 |  | rabid | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( ( 𝐴  ∩  𝐵 )  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 }  ↔  ( 𝑐  ∈  ( ( 𝐴  ∩  𝐵 )  ↑m  ( 0 ..^ 𝑆 ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 ) ) | 
						
							| 31 | 29 30 | bitrdi | ⊢ ( 𝜑  →  ( 𝑐  ∈  ( ( 𝐴  ∩  𝐵 ) ( repr ‘ 𝑆 ) 𝑀 )  ↔  ( 𝑐  ∈  ( ( 𝐴  ∩  𝐵 )  ↑m  ( 0 ..^ 𝑆 ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 ) ) ) | 
						
							| 32 | 1 2 3 | reprval | ⊢ ( 𝜑  →  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  =  { 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 } ) | 
						
							| 33 | 32 | eleq2d | ⊢ ( 𝜑  →  ( 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ↔  𝑐  ∈  { 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 } ) ) | 
						
							| 34 |  | rabid | ⊢ ( 𝑐  ∈  { 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 }  ↔  ( 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 ) ) | 
						
							| 35 | 33 34 | bitrdi | ⊢ ( 𝜑  →  ( 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ↔  ( 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 ) ) ) | 
						
							| 36 | 35 | anbi1d | ⊢ ( 𝜑  →  ( ( 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∧  ran  𝑐  ⊆  𝐵 )  ↔  ( ( 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 )  ∧  ran  𝑐  ⊆  𝐵 ) ) ) | 
						
							| 37 |  | an32 | ⊢ ( ( ( 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 )  ∧  ran  𝑐  ⊆  𝐵 )  ↔  ( ( 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  ran  𝑐  ⊆  𝐵 )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 ) ) | 
						
							| 38 | 36 37 | bitrdi | ⊢ ( 𝜑  →  ( ( 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∧  ran  𝑐  ⊆  𝐵 )  ↔  ( ( 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∧  ran  𝑐  ⊆  𝐵 )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 ) ) ) | 
						
							| 39 | 25 31 38 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝑐  ∈  ( ( 𝐴  ∩  𝐵 ) ( repr ‘ 𝑆 ) 𝑀 )  ↔  ( 𝑐  ∈  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  ∧  ran  𝑐  ⊆  𝐵 ) ) ) |