Metamath Proof Explorer


Theorem reprinrn

Description: Representations with term in an intersection. (Contributed by Thierry Arnoux, 11-Dec-2021)

Ref Expression
Hypotheses reprval.a ( 𝜑𝐴 ⊆ ℕ )
reprval.m ( 𝜑𝑀 ∈ ℤ )
reprval.s ( 𝜑𝑆 ∈ ℕ0 )
Assertion reprinrn ( 𝜑 → ( 𝑐 ∈ ( ( 𝐴𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ↔ ( 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ran 𝑐𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 reprval.a ( 𝜑𝐴 ⊆ ℕ )
2 reprval.m ( 𝜑𝑀 ∈ ℤ )
3 reprval.s ( 𝜑𝑆 ∈ ℕ0 )
4 fin ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 𝐴𝐵 ) ↔ ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ) )
5 df-f ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ↔ ( 𝑐 Fn ( 0 ..^ 𝑆 ) ∧ ran 𝑐𝐵 ) )
6 ffn ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴𝑐 Fn ( 0 ..^ 𝑆 ) )
7 6 adantl ( ( 𝜑𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) → 𝑐 Fn ( 0 ..^ 𝑆 ) )
8 7 biantrurd ( ( 𝜑𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) → ( ran 𝑐𝐵 ↔ ( 𝑐 Fn ( 0 ..^ 𝑆 ) ∧ ran 𝑐𝐵 ) ) )
9 8 bicomd ( ( 𝜑𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) → ( ( 𝑐 Fn ( 0 ..^ 𝑆 ) ∧ ran 𝑐𝐵 ) ↔ ran 𝑐𝐵 ) )
10 5 9 syl5bb ( ( 𝜑𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) → ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ↔ ran 𝑐𝐵 ) )
11 10 pm5.32da ( 𝜑 → ( ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐵 ) ↔ ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ∧ ran 𝑐𝐵 ) ) )
12 4 11 syl5bb ( 𝜑 → ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 𝐴𝐵 ) ↔ ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ∧ ran 𝑐𝐵 ) ) )
13 nnex ℕ ∈ V
14 13 a1i ( 𝜑 → ℕ ∈ V )
15 14 1 ssexd ( 𝜑𝐴 ∈ V )
16 inex1g ( 𝐴 ∈ V → ( 𝐴𝐵 ) ∈ V )
17 15 16 syl ( 𝜑 → ( 𝐴𝐵 ) ∈ V )
18 ovex ( 0 ..^ 𝑆 ) ∈ V
19 elmapg ( ( ( 𝐴𝐵 ) ∈ V ∧ ( 0 ..^ 𝑆 ) ∈ V ) → ( 𝑐 ∈ ( ( 𝐴𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ↔ 𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 𝐴𝐵 ) ) )
20 17 18 19 sylancl ( 𝜑 → ( 𝑐 ∈ ( ( 𝐴𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ↔ 𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 𝐴𝐵 ) ) )
21 elmapg ( ( 𝐴 ∈ V ∧ ( 0 ..^ 𝑆 ) ∈ V ) → ( 𝑐 ∈ ( 𝐴m ( 0 ..^ 𝑆 ) ) ↔ 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) )
22 15 18 21 sylancl ( 𝜑 → ( 𝑐 ∈ ( 𝐴m ( 0 ..^ 𝑆 ) ) ↔ 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) )
23 22 anbi1d ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴m ( 0 ..^ 𝑆 ) ) ∧ ran 𝑐𝐵 ) ↔ ( 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ∧ ran 𝑐𝐵 ) ) )
24 12 20 23 3bitr4d ( 𝜑 → ( 𝑐 ∈ ( ( 𝐴𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ↔ ( 𝑐 ∈ ( 𝐴m ( 0 ..^ 𝑆 ) ) ∧ ran 𝑐𝐵 ) ) )
25 24 anbi1d ( 𝜑 → ( ( 𝑐 ∈ ( ( 𝐴𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 ) ↔ ( ( 𝑐 ∈ ( 𝐴m ( 0 ..^ 𝑆 ) ) ∧ ran 𝑐𝐵 ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 ) ) )
26 inss1 ( 𝐴𝐵 ) ⊆ 𝐴
27 26 1 sstrid ( 𝜑 → ( 𝐴𝐵 ) ⊆ ℕ )
28 27 2 3 reprval ( 𝜑 → ( ( 𝐴𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) = { 𝑐 ∈ ( ( 𝐴𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 } )
29 28 eleq2d ( 𝜑 → ( 𝑐 ∈ ( ( 𝐴𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ↔ 𝑐 ∈ { 𝑐 ∈ ( ( 𝐴𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 } ) )
30 rabid ( 𝑐 ∈ { 𝑐 ∈ ( ( 𝐴𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 } ↔ ( 𝑐 ∈ ( ( 𝐴𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 ) )
31 29 30 bitrdi ( 𝜑 → ( 𝑐 ∈ ( ( 𝐴𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ↔ ( 𝑐 ∈ ( ( 𝐴𝐵 ) ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 ) ) )
32 1 2 3 reprval ( 𝜑 → ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) = { 𝑐 ∈ ( 𝐴m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 } )
33 32 eleq2d ( 𝜑 → ( 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ↔ 𝑐 ∈ { 𝑐 ∈ ( 𝐴m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 } ) )
34 rabid ( 𝑐 ∈ { 𝑐 ∈ ( 𝐴m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 } ↔ ( 𝑐 ∈ ( 𝐴m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 ) )
35 33 34 bitrdi ( 𝜑 → ( 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ↔ ( 𝑐 ∈ ( 𝐴m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 ) ) )
36 35 anbi1d ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ran 𝑐𝐵 ) ↔ ( ( 𝑐 ∈ ( 𝐴m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 ) ∧ ran 𝑐𝐵 ) ) )
37 an32 ( ( ( 𝑐 ∈ ( 𝐴m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 ) ∧ ran 𝑐𝐵 ) ↔ ( ( 𝑐 ∈ ( 𝐴m ( 0 ..^ 𝑆 ) ) ∧ ran 𝑐𝐵 ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 ) )
38 36 37 bitrdi ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ran 𝑐𝐵 ) ↔ ( ( 𝑐 ∈ ( 𝐴m ( 0 ..^ 𝑆 ) ) ∧ ran 𝑐𝐵 ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐𝑎 ) = 𝑀 ) ) )
39 25 31 38 3bitr4d ( 𝜑 → ( 𝑐 ∈ ( ( 𝐴𝐵 ) ( repr ‘ 𝑆 ) 𝑀 ) ↔ ( 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ran 𝑐𝐵 ) ) )