Step |
Hyp |
Ref |
Expression |
1 |
|
reprpmtf1o.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ ) |
2 |
|
reprpmtf1o.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
reprpmtf1o.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) |
4 |
|
reprpmtf1o.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ 𝑆 ) ) |
5 |
|
reprpmtf1o.o |
⊢ 𝑂 = { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 0 ) ∈ 𝐵 } |
6 |
|
reprpmtf1o.p |
⊢ 𝑃 = { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 } |
7 |
|
reprpmtf1o.t |
⊢ 𝑇 = if ( 𝑋 = 0 , ( I ↾ ( 0 ..^ 𝑆 ) ) , ( ( pmTrsp ‘ ( 0 ..^ 𝑆 ) ) ‘ { 𝑋 , 0 } ) ) |
8 |
|
reprpmtf1o.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑃 ↦ ( 𝑐 ∘ 𝑇 ) ) |
9 |
|
eqid |
⊢ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) = ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) |
10 |
|
eqid |
⊢ ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) = ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) |
11 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ 𝑆 ) ∈ V ) |
12 |
|
nnex |
⊢ ℕ ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
14 |
13 3
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
15 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝑆 ) ↔ 𝑆 ∈ ℕ ) |
16 |
1 15
|
sylibr |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ 𝑆 ) ) |
17 |
11 4 16 7
|
pmtridf1o |
⊢ ( 𝜑 → 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) ) |
18 |
9 9 10 11 11 14 17
|
fmptco1f1o |
⊢ ( 𝜑 → ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) –1-1-onto→ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
19 |
|
f1of1 |
⊢ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) –1-1-onto→ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) → ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) –1-1→ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) –1-1→ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
21 |
|
ssrab2 |
⊢ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ⊆ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) |
22 |
6
|
ssrab3 |
⊢ 𝑃 ⊆ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) |
23 |
22
|
a1i |
⊢ ( 𝜑 → 𝑃 ⊆ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) |
24 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
25 |
3 2 24
|
reprval |
⊢ ( 𝜑 → ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) = { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
26 |
23 25
|
sseqtrd |
⊢ ( 𝜑 → 𝑃 ⊆ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
27 |
26
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑐 ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
28 |
21 27
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
29 |
28
|
ex |
⊢ ( 𝜑 → ( 𝑐 ∈ 𝑃 → 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) ) |
30 |
29
|
ssrdv |
⊢ ( 𝜑 → 𝑃 ⊆ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
31 |
|
f1ores |
⊢ ( ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) –1-1→ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ 𝑃 ⊆ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) → ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) ↾ 𝑃 ) : 𝑃 –1-1-onto→ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) ) |
32 |
20 30 31
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) ↾ 𝑃 ) : 𝑃 –1-1-onto→ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) ) |
33 |
|
resmpt |
⊢ ( 𝑃 ⊆ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) → ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) ↾ 𝑃 ) = ( 𝑐 ∈ 𝑃 ↦ ( 𝑐 ∘ 𝑇 ) ) ) |
34 |
30 33
|
syl |
⊢ ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) ↾ 𝑃 ) = ( 𝑐 ∈ 𝑃 ↦ ( 𝑐 ∘ 𝑇 ) ) ) |
35 |
34 8
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) ↾ 𝑃 ) = 𝐹 ) |
36 |
|
eqidd |
⊢ ( 𝜑 → 𝑃 = 𝑃 ) |
37 |
|
vex |
⊢ 𝑑 ∈ V |
38 |
37
|
a1i |
⊢ ( 𝜑 → 𝑑 ∈ V ) |
39 |
10 38 30
|
elimampt |
⊢ ( 𝜑 → ( 𝑑 ∈ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) ↔ ∃ 𝑐 ∈ 𝑃 𝑑 = ( 𝑐 ∘ 𝑇 ) ) ) |
40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → 𝑑 = ( 𝑐 ∘ 𝑇 ) ) |
41 |
|
f1of |
⊢ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) –1-1-onto→ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) → ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ⟶ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
42 |
18 41
|
syl |
⊢ ( 𝜑 → ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ⟶ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ⟶ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
44 |
10
|
fmpt |
⊢ ( ∀ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ( 𝑐 ∘ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↔ ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ⟶ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
45 |
43 44
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ∀ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ( 𝑐 ∘ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
46 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
47 |
|
rspa |
⊢ ( ( ∀ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ( 𝑐 ∘ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) → ( 𝑐 ∘ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
48 |
45 46 47
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝑐 ∘ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
49 |
40 48
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
50 |
40
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑑 = ( 𝑐 ∘ 𝑇 ) ) |
51 |
50
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑑 ‘ 𝑎 ) = ( ( 𝑐 ∘ 𝑇 ) ‘ 𝑎 ) ) |
52 |
|
f1ofun |
⊢ ( 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) → Fun 𝑇 ) |
53 |
17 52
|
syl |
⊢ ( 𝜑 → Fun 𝑇 ) |
54 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → Fun 𝑇 ) |
55 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ ( 0 ..^ 𝑆 ) ) |
56 |
|
f1odm |
⊢ ( 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) → dom 𝑇 = ( 0 ..^ 𝑆 ) ) |
57 |
17 56
|
syl |
⊢ ( 𝜑 → dom 𝑇 = ( 0 ..^ 𝑆 ) ) |
58 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → dom 𝑇 = ( 0 ..^ 𝑆 ) ) |
59 |
55 58
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ dom 𝑇 ) |
60 |
|
fvco |
⊢ ( ( Fun 𝑇 ∧ 𝑎 ∈ dom 𝑇 ) → ( ( 𝑐 ∘ 𝑇 ) ‘ 𝑎 ) = ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
61 |
54 59 60
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝑐 ∘ 𝑇 ) ‘ 𝑎 ) = ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
62 |
61
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝑐 ∘ 𝑇 ) ‘ 𝑎 ) = ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
63 |
51 62
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑑 ‘ 𝑎 ) = ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
64 |
63
|
sumeq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
65 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝑇 ‘ 𝑎 ) → ( 𝑐 ‘ 𝑏 ) = ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
66 |
|
fzofi |
⊢ ( 0 ..^ 𝑆 ) ∈ Fin |
67 |
66
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → ( 0 ..^ 𝑆 ) ∈ Fin ) |
68 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) ) |
69 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑇 ‘ 𝑎 ) = ( 𝑇 ‘ 𝑎 ) ) |
70 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → 𝐴 ⊆ ℕ ) |
71 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝐴 ⊆ ℕ ) |
72 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑀 ∈ ℤ ) |
73 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑆 ∈ ℕ0 ) |
74 |
23
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) |
75 |
71 72 73 74
|
reprf |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) |
76 |
75
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑐 ‘ 𝑏 ) ∈ 𝐴 ) |
77 |
70 76
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑐 ‘ 𝑏 ) ∈ ℕ ) |
78 |
77
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑐 ‘ 𝑏 ) ∈ ℂ ) |
79 |
65 67 68 69 78
|
fsumf1o |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → Σ 𝑏 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑏 ) = Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
80 |
79
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → Σ 𝑏 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑏 ) = Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
81 |
71 72 73 74
|
reprsum |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → Σ 𝑏 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑏 ) = 𝑀 ) |
82 |
81
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → Σ 𝑏 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑏 ) = 𝑀 ) |
83 |
64 80 82
|
3eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) |
84 |
|
fveq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 ‘ 𝑎 ) = ( 𝑑 ‘ 𝑎 ) ) |
85 |
84
|
sumeq2sdv |
⊢ ( 𝑐 = 𝑑 → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) ) |
86 |
85
|
eqeq1d |
⊢ ( 𝑐 = 𝑑 → ( Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ↔ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ) |
87 |
86
|
elrab |
⊢ ( 𝑑 ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ↔ ( 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ) |
88 |
49 83 87
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → 𝑑 ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
89 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) = { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
90 |
88 89
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) |
91 |
40
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝑑 ‘ 0 ) = ( ( 𝑐 ∘ 𝑇 ) ‘ 0 ) ) |
92 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → Fun 𝑇 ) |
93 |
16 57
|
eleqtrrd |
⊢ ( 𝜑 → 0 ∈ dom 𝑇 ) |
94 |
93
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → 0 ∈ dom 𝑇 ) |
95 |
|
fvco |
⊢ ( ( Fun 𝑇 ∧ 0 ∈ dom 𝑇 ) → ( ( 𝑐 ∘ 𝑇 ) ‘ 0 ) = ( 𝑐 ‘ ( 𝑇 ‘ 0 ) ) ) |
96 |
92 94 95
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( ( 𝑐 ∘ 𝑇 ) ‘ 0 ) = ( 𝑐 ‘ ( 𝑇 ‘ 0 ) ) ) |
97 |
11 4 16 7
|
pmtridfv2 |
⊢ ( 𝜑 → ( 𝑇 ‘ 0 ) = 𝑋 ) |
98 |
97
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝑇 ‘ 0 ) = 𝑋 ) |
99 |
98
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝑐 ‘ ( 𝑇 ‘ 0 ) ) = ( 𝑐 ‘ 𝑋 ) ) |
100 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑐 ∈ 𝑃 ) |
101 |
100 6
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑐 ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 } ) |
102 |
|
rabid |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 } ↔ ( 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 ) ) |
103 |
101 102
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → ( 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 ) ) |
104 |
103
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 ) |
105 |
104
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 ) |
106 |
99 105
|
eqneltrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ¬ ( 𝑐 ‘ ( 𝑇 ‘ 0 ) ) ∈ 𝐵 ) |
107 |
96 106
|
eqneltrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ¬ ( ( 𝑐 ∘ 𝑇 ) ‘ 0 ) ∈ 𝐵 ) |
108 |
91 107
|
eqneltrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) |
109 |
90 108
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) |
110 |
109
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑐 ∈ 𝑃 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) |
111 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝐴 ⊆ ℕ ) |
112 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑀 ∈ ℤ ) |
113 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑆 ∈ ℕ0 ) |
114 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) |
115 |
111 112 113 114
|
reprf |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) |
116 |
|
f1ocnv |
⊢ ( 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) → ◡ 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) ) |
117 |
|
f1of |
⊢ ( ◡ 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) → ◡ 𝑇 : ( 0 ..^ 𝑆 ) ⟶ ( 0 ..^ 𝑆 ) ) |
118 |
17 116 117
|
3syl |
⊢ ( 𝜑 → ◡ 𝑇 : ( 0 ..^ 𝑆 ) ⟶ ( 0 ..^ 𝑆 ) ) |
119 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ◡ 𝑇 : ( 0 ..^ 𝑆 ) ⟶ ( 0 ..^ 𝑆 ) ) |
120 |
|
fco |
⊢ ( ( 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ∧ ◡ 𝑇 : ( 0 ..^ 𝑆 ) ⟶ ( 0 ..^ 𝑆 ) ) → ( 𝑑 ∘ ◡ 𝑇 ) : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) |
121 |
115 119 120
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( 𝑑 ∘ ◡ 𝑇 ) : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) |
122 |
|
elmapg |
⊢ ( ( 𝐴 ∈ V ∧ ( 0 ..^ 𝑆 ) ∈ V ) → ( ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↔ ( 𝑑 ∘ ◡ 𝑇 ) : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) ) |
123 |
14 11 122
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↔ ( 𝑑 ∘ ◡ 𝑇 ) : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) ) |
124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↔ ( 𝑑 ∘ ◡ 𝑇 ) : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) ) |
125 |
121 124
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
126 |
125
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
127 |
|
f1ofun |
⊢ ( ◡ 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) → Fun ◡ 𝑇 ) |
128 |
17 116 127
|
3syl |
⊢ ( 𝜑 → Fun ◡ 𝑇 ) |
129 |
128
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → Fun ◡ 𝑇 ) |
130 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ ( 0 ..^ 𝑆 ) ) |
131 |
|
f1odm |
⊢ ( ◡ 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) → dom ◡ 𝑇 = ( 0 ..^ 𝑆 ) ) |
132 |
17 116 131
|
3syl |
⊢ ( 𝜑 → dom ◡ 𝑇 = ( 0 ..^ 𝑆 ) ) |
133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → dom ◡ 𝑇 = ( 0 ..^ 𝑆 ) ) |
134 |
130 133
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ dom ◡ 𝑇 ) |
135 |
134
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ dom ◡ 𝑇 ) |
136 |
|
fvco |
⊢ ( ( Fun ◡ 𝑇 ∧ 𝑎 ∈ dom ◡ 𝑇 ) → ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) = ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑎 ) ) ) |
137 |
129 135 136
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) = ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑎 ) ) ) |
138 |
137
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) = Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑎 ) ) ) |
139 |
|
fveq2 |
⊢ ( 𝑏 = ( ◡ 𝑇 ‘ 𝑎 ) → ( 𝑑 ‘ 𝑏 ) = ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑎 ) ) ) |
140 |
66
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( 0 ..^ 𝑆 ) ∈ Fin ) |
141 |
17 116
|
syl |
⊢ ( 𝜑 → ◡ 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) ) |
142 |
141
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ◡ 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) ) |
143 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ◡ 𝑇 ‘ 𝑎 ) = ( ◡ 𝑇 ‘ 𝑎 ) ) |
144 |
111
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → 𝐴 ⊆ ℕ ) |
145 |
115
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑑 ‘ 𝑏 ) ∈ 𝐴 ) |
146 |
144 145
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑑 ‘ 𝑏 ) ∈ ℕ ) |
147 |
146
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑑 ‘ 𝑏 ) ∈ ℂ ) |
148 |
139 140 142 143 147
|
fsumf1o |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → Σ 𝑏 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑏 ) = Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑎 ) ) ) |
149 |
111 112 113 114
|
reprsum |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → Σ 𝑏 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑏 ) = 𝑀 ) |
150 |
138 148 149
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) = 𝑀 ) |
151 |
150
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) = 𝑀 ) |
152 |
|
fveq1 |
⊢ ( 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) → ( 𝑐 ‘ 𝑎 ) = ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) ) |
153 |
152
|
sumeq2sdv |
⊢ ( 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) ) |
154 |
153
|
eqeq1d |
⊢ ( 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) → ( Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ↔ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) = 𝑀 ) ) |
155 |
154
|
elrab |
⊢ ( ( 𝑑 ∘ ◡ 𝑇 ) ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ↔ ( ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) = 𝑀 ) ) |
156 |
126 151 155
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( 𝑑 ∘ ◡ 𝑇 ) ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
157 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) = { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
158 |
156 157
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) |
159 |
128
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → Fun ◡ 𝑇 ) |
160 |
4 132
|
eleqtrrd |
⊢ ( 𝜑 → 𝑋 ∈ dom ◡ 𝑇 ) |
161 |
160
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → 𝑋 ∈ dom ◡ 𝑇 ) |
162 |
|
fvco |
⊢ ( ( Fun ◡ 𝑇 ∧ 𝑋 ∈ dom ◡ 𝑇 ) → ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑋 ) = ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑋 ) ) ) |
163 |
159 161 162
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑋 ) = ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑋 ) ) ) |
164 |
|
f1ocnvfv |
⊢ ( ( 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) ∧ 0 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝑇 ‘ 0 ) = 𝑋 → ( ◡ 𝑇 ‘ 𝑋 ) = 0 ) ) |
165 |
164
|
imp |
⊢ ( ( ( 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) ∧ 0 ∈ ( 0 ..^ 𝑆 ) ) ∧ ( 𝑇 ‘ 0 ) = 𝑋 ) → ( ◡ 𝑇 ‘ 𝑋 ) = 0 ) |
166 |
17 16 97 165
|
syl21anc |
⊢ ( 𝜑 → ( ◡ 𝑇 ‘ 𝑋 ) = 0 ) |
167 |
166
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( ◡ 𝑇 ‘ 𝑋 ) = 0 ) |
168 |
167
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑋 ) ) = ( 𝑑 ‘ 0 ) ) |
169 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) |
170 |
168 169
|
eqneltrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ¬ ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑋 ) ) ∈ 𝐵 ) |
171 |
163 170
|
eqneltrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ¬ ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑋 ) ∈ 𝐵 ) |
172 |
|
fveq1 |
⊢ ( 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) → ( 𝑐 ‘ 𝑋 ) = ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑋 ) ) |
173 |
172
|
eleq1d |
⊢ ( 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) → ( ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 ↔ ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑋 ) ∈ 𝐵 ) ) |
174 |
173
|
notbid |
⊢ ( 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) → ( ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 ↔ ¬ ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑋 ) ∈ 𝐵 ) ) |
175 |
174
|
elrab |
⊢ ( ( 𝑑 ∘ ◡ 𝑇 ) ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 } ↔ ( ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑋 ) ∈ 𝐵 ) ) |
176 |
158 171 175
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( 𝑑 ∘ ◡ 𝑇 ) ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 } ) |
177 |
176 6
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( 𝑑 ∘ ◡ 𝑇 ) ∈ 𝑃 ) |
178 |
177
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → ( 𝑑 ∘ ◡ 𝑇 ) ∈ 𝑃 ) |
179 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) ∧ 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) ) → 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) ) |
180 |
179
|
coeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) ∧ 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) ) → ( 𝑐 ∘ 𝑇 ) = ( ( 𝑑 ∘ ◡ 𝑇 ) ∘ 𝑇 ) ) |
181 |
180
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) ∧ 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) ) → ( 𝑑 = ( 𝑐 ∘ 𝑇 ) ↔ 𝑑 = ( ( 𝑑 ∘ ◡ 𝑇 ) ∘ 𝑇 ) ) ) |
182 |
|
f1ococnv1 |
⊢ ( 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) → ( ◡ 𝑇 ∘ 𝑇 ) = ( I ↾ ( 0 ..^ 𝑆 ) ) ) |
183 |
17 182
|
syl |
⊢ ( 𝜑 → ( ◡ 𝑇 ∘ 𝑇 ) = ( I ↾ ( 0 ..^ 𝑆 ) ) ) |
184 |
183
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → ( ◡ 𝑇 ∘ 𝑇 ) = ( I ↾ ( 0 ..^ 𝑆 ) ) ) |
185 |
184
|
coeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → ( 𝑑 ∘ ( ◡ 𝑇 ∘ 𝑇 ) ) = ( 𝑑 ∘ ( I ↾ ( 0 ..^ 𝑆 ) ) ) ) |
186 |
115
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) |
187 |
|
fcoi1 |
⊢ ( 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 → ( 𝑑 ∘ ( I ↾ ( 0 ..^ 𝑆 ) ) ) = 𝑑 ) |
188 |
186 187
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → ( 𝑑 ∘ ( I ↾ ( 0 ..^ 𝑆 ) ) ) = 𝑑 ) |
189 |
185 188
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → 𝑑 = ( 𝑑 ∘ ( ◡ 𝑇 ∘ 𝑇 ) ) ) |
190 |
|
coass |
⊢ ( ( 𝑑 ∘ ◡ 𝑇 ) ∘ 𝑇 ) = ( 𝑑 ∘ ( ◡ 𝑇 ∘ 𝑇 ) ) |
191 |
189 190
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → 𝑑 = ( ( 𝑑 ∘ ◡ 𝑇 ) ∘ 𝑇 ) ) |
192 |
178 181 191
|
rspcedvd |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → ∃ 𝑐 ∈ 𝑃 𝑑 = ( 𝑐 ∘ 𝑇 ) ) |
193 |
110 192
|
impbida |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝑃 𝑑 = ( 𝑐 ∘ 𝑇 ) ↔ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) ) |
194 |
39 193
|
bitrd |
⊢ ( 𝜑 → ( 𝑑 ∈ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) ↔ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) ) |
195 |
|
fveq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) |
196 |
195
|
eleq1d |
⊢ ( 𝑐 = 𝑑 → ( ( 𝑐 ‘ 0 ) ∈ 𝐵 ↔ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) |
197 |
196
|
notbid |
⊢ ( 𝑐 = 𝑑 → ( ¬ ( 𝑐 ‘ 0 ) ∈ 𝐵 ↔ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) |
198 |
197
|
elrab |
⊢ ( 𝑑 ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 0 ) ∈ 𝐵 } ↔ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) |
199 |
194 198
|
bitr4di |
⊢ ( 𝜑 → ( 𝑑 ∈ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) ↔ 𝑑 ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 0 ) ∈ 𝐵 } ) ) |
200 |
199
|
eqrdv |
⊢ ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) = { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 0 ) ∈ 𝐵 } ) |
201 |
200 5
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) = 𝑂 ) |
202 |
35 36 201
|
f1oeq123d |
⊢ ( 𝜑 → ( ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) ↾ 𝑃 ) : 𝑃 –1-1-onto→ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) ↔ 𝐹 : 𝑃 –1-1-onto→ 𝑂 ) ) |
203 |
32 202
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝑃 –1-1-onto→ 𝑂 ) |