| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							reprval.a | 
							⊢ ( 𝜑  →  𝐴  ⊆  ℕ )  | 
						
						
							| 2 | 
							
								
							 | 
							reprval.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 3 | 
							
								
							 | 
							reprval.s | 
							⊢ ( 𝜑  →  𝑆  ∈  ℕ0 )  | 
						
						
							| 4 | 
							
								
							 | 
							reprss.1 | 
							⊢ ( 𝜑  →  𝐵  ⊆  𝐴 )  | 
						
						
							| 5 | 
							
								
							 | 
							nnex | 
							⊢ ℕ  ∈  V  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( 𝜑  →  ℕ  ∈  V )  | 
						
						
							| 7 | 
							
								6 1
							 | 
							ssexd | 
							⊢ ( 𝜑  →  𝐴  ∈  V )  | 
						
						
							| 8 | 
							
								
							 | 
							mapss | 
							⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ⊆  𝐴 )  →  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) )  ⊆  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  | 
						
						
							| 9 | 
							
								7 4 8
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) )  ⊆  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑐  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) ) )  →  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantrr | 
							⊢ ( ( 𝜑  ∧  ( 𝑐  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) )  ∧  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 ) )  →  𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							rabss3d | 
							⊢ ( 𝜑  →  { 𝑐  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 }  ⊆  { 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 } )  | 
						
						
							| 13 | 
							
								4 1
							 | 
							sstrd | 
							⊢ ( 𝜑  →  𝐵  ⊆  ℕ )  | 
						
						
							| 14 | 
							
								13 2 3
							 | 
							reprval | 
							⊢ ( 𝜑  →  ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 )  =  { 𝑐  ∈  ( 𝐵  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 } )  | 
						
						
							| 15 | 
							
								1 2 3
							 | 
							reprval | 
							⊢ ( 𝜑  →  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 )  =  { 𝑐  ∈  ( 𝐴  ↑m  ( 0 ..^ 𝑆 ) )  ∣  Σ 𝑎  ∈  ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 )  =  𝑀 } )  | 
						
						
							| 16 | 
							
								12 14 15
							 | 
							3sstr4d | 
							⊢ ( 𝜑  →  ( 𝐵 ( repr ‘ 𝑆 ) 𝑀 )  ⊆  ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) )  |