Metamath Proof Explorer


Theorem repsconst

Description: Construct a function mapping a half-open range of nonnegative integers to a constant, see also fconstmpt . (Contributed by AV, 4-Nov-2018)

Ref Expression
Assertion repsconst ( ( 𝑆𝑉𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) = ( ( 0 ..^ 𝑁 ) × { 𝑆 } ) )

Proof

Step Hyp Ref Expression
1 reps ( ( 𝑆𝑉𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) = ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 ) )
2 fconstmpt ( ( 0 ..^ 𝑁 ) × { 𝑆 } ) = ( 𝑥 ∈ ( 0 ..^ 𝑁 ) ↦ 𝑆 )
3 1 2 eqtr4di ( ( 𝑆𝑉𝑁 ∈ ℕ0 ) → ( 𝑆 repeatS 𝑁 ) = ( ( 0 ..^ 𝑁 ) × { 𝑆 } ) )